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This paper aims to investigate the capabilities of exploiting optical line-of-sight navigation using star trackers.
First, a synthetic image simulator is developed to generate realistic images, which is later exploited to test the star
tracker’s performance. Then, generic considerations regarding attitude estimation are drawn, highlighting how
the camera’s characteristics influence the accuracy of the estimation. The full attitude estimation chain is designed
and analyzed in order to maximize the performance in a deep-space cruising scenario. After that, the focus is shifted
to the actual planet-centroiding algorithm, with particular emphasis on the illumination compensation routine,
which is shown to be fundamental to achieving the required navigation accuracy. The influence of the center of the
planet within the singular pixel is investigated, showing how this uncontrollable parameter can lower performance.
Finally, the complete algorithm chain is tested with the synthetic image simulator in a wide range of scenarios. The
final promising results show that with the selected hardware, even in the higher noise condition, it is possible to
achieve a direction’s azimuth and elevation angle error in the order of 1–2 arc sec for Venus, and below 1 arc sec
for Jupiter, for a spacecraft placed at 1 AU from the Sun. These values finally allow for a positioning error below
1000 km, which is in line with the current non-autonomous navigation state-of-the-art. © 2023 Optica Publishing

Group

https://doi.org/10.1364/AO.494586

1. INTRODUCTION

The exploration of deep-space has become one of the most
challenging and exciting frontiers in modern science and
technology. The ability to navigate and control spacecraft in
deep-space environments is crucial for the success of these
missions, and the development of precise and accurate attitude
estimation and autonomous navigation systems is a key aspect
of this challenge. Star trackers have emerged as a promising
technology for attitude estimation and autonomous navigation
in deep-space due to their high precision and accuracy.

A star tracker is a device that captures images of the star
field and uses algorithms to determine the orientation of the
spacecraft with respect to an inertial reference frame. The high
precision and accuracy of star trackers make them ideal for
navigation in deep-space, where GPS signals are not available.
In fact, together with attitude, observing visible bodies (e.g.,
planets, moons, asteroids) with a star tracker allows us to also
estimate the spacecraft’s state (position and velocity) in a helio-
centric reference frame. This technique can be referred to as
optical line-of-sight (LoS) navigation, and it is based on feeding
a navigation filter with the directions (in terms of azimuth and
elevation) of observable bodies, mainly planets; these directions

are matched within the filter with the actual positions of the
object, which are stored onboard.

The objective of this paper is to review the current state-of-
the-art in star tracker algorithms for attitude determination and
to design a complete estimation chain that maximizes the per-
formance in deep-space cruising scenarios. The paper focuses
on the performance of these algorithms in various deep-space
missions. Together with attitude, also the planet-centroiding
algorithm is developed, posing particular attention to the illu-
mination compensation (IC) algorithm. Attitude estimation
and planet centroiding are intrinsically related in LoS optical
navigation because measurements shall enter the navigation
filter in the form of azimuth and elevation,

az= arctan
y los

x los
, (1)

e l = arcsin zlos, (2)

where x los, y los, zlos are the components of the unit vector
pointing from the spacecraft to the observed object. This vector
should be computed in a heliocentric frame because within
the filter it is matched with the actual LoS, which can be easily
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computed in the same frame. So, planet centroiding computes
the LoS vector in a camera frame, and this information will be
converted to a heliocentric frame to be used within the filter.
This is done with the rotation matrix computed by solving the
attitude estimation,

Er h
los = Rh

b Er
b
los, (3)

where Er h
los and Er b

los are, respectively, the LoS vector in a helio-
centric and body (or camera) frame, while Rh

b is the rotation
matrix between them, obtained by solving the attitude esti-
mation. Achieving precise azimuth and elevation estimation
is of utmost importance in evaluating the effectiveness of LoS
navigation. According to findings presented in [1], an error
of 1 arc sec in azimuth and elevation lead to positioning errors
ranging from 100 km to 400 km, depending on the celestial
bodies being observed. Furthermore, this error worsens sig-
nificantly to approximately 1000 km when the measurement
error increases to 10 arc sec. To achieve positioning errors below
100 km, it is necessary to reduce the azimuth and elevation error
to 0.1 arc sec. Hence, the significance of robust and performant
attitude estimation and planet’s centroiding algorithms cannot
be overstated for LoS navigation as they directly determine the
attainable positional precision.

Then, the algorithms are tested on a developed space image
simulator (SIS), implementing the characteristics of specific
hardware, and the performance is highlighted.

This work is intended to fill the gap in the literature, as pre-
liminary analysis has shown promising performance for the
application of autonomous LoS navigation to real deep-space
cruising mission scenarios. In [2], the technique is investigated
for its application to the currently under-development mission
M-ARGO. The same authors in [3] developed an analytical
performance index that quantifies whether an observation
geometry is or is not appropriate to achieve good results. In
[4], the technique has been tested on a Raspberry Pi to evaluate
the computing performance. In [1], the intrinsic properties
of the method have been investigated, posing attention to the
influence of measurement error on the position and velocity
estimation error, showing that—to reach a positioning accuracy
in the order of a few hundred meters—the LoS measurement
error should not be larger than few arc seconds. However, all
of these studies considered out-of-the-loop the actual image
processing and observation scenario, whose importance is
shown in this paper. In fact, these analyses assumed a constant
standard deviation error on the measurement generation, based
on star tracker characteristics, which in reality is not the case.
First, each planet has a different centroiding estimation error,
which is based on its observation characteristics. Second, even
the same planet presents different estimation errors as a function
of the actual observation scenario. So, this paper is intended to
pose the basis to perform image-in-the-loop navigation analysis
to further prove the feasibility of exploiting LoS navigation in
real missions.

The paper is organized as follows: In Section 2, the SIS is
presented, focusing on the needed improvement for LoS naviga-
tion analysis. Moreover in Section 2, also the selected hardware
(sensor and lens) that is later used for performance analysis is
presented. The decision of presenting these two pieces of work

at the beginning of the paper is because they are exploited in the
definition of appropriate algorithms, even before the complete
testing. In Section 3, the complete attitude estimation chain is
evaluated and designed. In Section 4, the planet-centroiding
algorithm, with IC, is developed. In Section 5, the SIS is used
to generate a wide range of observation scenarios for Venus and
Jupiter in order to test the full LoS extraction chain. The analysis
has been limited to two representative planets allowing proper
testing. Finally, in the last section, conclusions are drawn, with
particular emphasis on the further steps of the road map for
completely deep-space autonomous spacecraft.

2. SPACE IMAGE SIMULATOR

The numerical results presented later in the text are obtained
with the help of a SIS that has been developed for this appli-
cation. While the simulation of stars has been sufficiently
consolidated, the simulation of planet images is not. This is
especially the case when the planet disks are particularly small
(e.g., the case of LoS optical navigation) and when blur is
applied (e.g., the case of using star trackers).

A. Star Simulation

The baseline to simulate stars in the field-of-view (FoV) is
inspired by [5]. The intensity of the stars (e.g., the number of
readout electrons from the sensor) is calculated as a function
of the sensor and lens system characteristics and of the visual
magnitude of the star. The number of emitted photons is also
a function of the given wavelength, and the conversion from
photons to electrons is again a function of it since the quantum
efficiency (QE) is wavelength-dependent. However, in this sim-
ulator, this is left out because the increased complexity would
not add much to the analysis. The central V-band wavelength
is selected (λ= 555.6 nm). The number of photons (later con-
verted to electrons) is calculated for a reference star (α-Lyrae,
with apparent magnitude 0.03 in the central V-band), and then
each other star’s photons number is computed by scaling as a
function of the magnitude. Going briefly to it, starting with the
Planck–Einstein equation, it is possible to express the number of
electrons read by the sensor forα-Lyrae as

Fe− = 3.44 · 10−8QE λ Tlens π R2
lens

BW

c h
τ, (4)

where the constant term is the emitting flux for the star at the
chosen λ, QE defines the percentage of photons successfully
converted into electrons, Tlens is the lens transmissivity that
defines the percentage of photons passing through the lens, Rlens

is the lens aperture radius, BW is the bandwidth, c is the speed of
light, h the Planck’s constant, and τ is the exposure time.

In star trackers, lens defocusing is done on purpose in order
to increase the accuracy of the star centroiding. As stars are at
infinite distances, they can be considered point-source light
emitters, which implies that their light may be focused on only
1 pixel. This of course limits the accuracy to the resolution of
the pixel. It is common practice to blur the light information
over several surrounding pixels, and with this approach, the
centroiding accuracy can reach a subpixel level. The simulator
implements a Gaussian blurring function as
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Ie−(u)=
1

√
2πσPSF

e
−

u−uc
2σ2

PSF , (5)

where Ie−(u) is the distribution function of the electrons as
a function of the u-component of the 2D sensor frame (same
equation for the v-component), uc is the u-component star cen-
ter, and σPSF is the blurring radius. By integrating this function
in both components for each pixel, it is possible to calculate
the total fraction of the electrons hitting a particular pixel as a
function of the actual center of the stars and the blurring radius.
Once the number of electrons for each pixel has been calculated,
the conversion to digital number can be approximated as

DN= ne−/pixel
BitDepth

Qsat
, (6)

where ne−/pixel is the number of electrons per pixel, while Qsat

is the pixel saturation capacity, which quantifies the maximum
number of electrons that can be read out by the singular pixel.
This conversion is based on the assumption that the maximum
DN is associated with saturation. This is often not the case, as
the maximum DN is usually associated with a slightly lower
value. However to simplify the analysis, and as no CMOS
datasheet reports this detail, it has been assumed like this.

The star 2D center location is another important parameter
that needs to be computed. By assuming a pinhole camera
model, the 3D unit vector can be converted into 2D sensor
coordinates as

u =
umax

2

y
x

(
arctan

ah

2
+ 1

)
, (7)

v =
vmax

2

z
x

(
arctan

av
2
+ 1

)
, (8)

where umax and vmax are the horizontal and vertical pixel res-
olution, ah and av are the horizontal and vertical FoV, and x ,
y , z are the three components of the star direction unit vector.
The SIS may be further improved by including eventual distor-
tions; however, for this analysis, a complete calibration has been
considered in order to focus on the important basic aspects.

B. Planet Simulation

Once the star background has been simulated, attention can
be devoted to representing accurately the planet. The approach
presented in [6] can be exploited and extended for this purpose.
The method is a purely geometric approach, which computes if
a certain pixel is lighted by a certain surface point of the planet.
This method works very accurately when the apparent angular
size of the planet is sufficiently large that the pixel resolution
can describe its shape. However, this approach does not provide
directly a fraction of light per pixel, and for this reason, when
the planet’s apparent size is comparable to the size of the pixel,
this method does not provide reliable information on how the
light is spread over the pixels. For this reason, for the simulation,
each pixel is divided into a grid of subpixels. The number of
subpixels can vary as a function of the apparent size of the planet.
Figure 1 below shows the apparent size in arc sec of the planetary
disks having an observer placed at a 1 AU distance from the Sun.
This distance has been chosen because this study is particularly
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Fig. 1. Planet’s apparent diameter for an observer placed at 1 AU
distance from the Sun. The angle between spacecraft and planet
position vectors is defined as the observer phasing angle.

interesting for near-Earth asteroid (NEA) exploration, which is
defined as those asteroids whose perihelion is below 1.3 AU.

The subpixel grid will have a dimension that guarantees
representation of the shape of the planet with sufficiently good
accuracy. However, a large size of the grid impacts the compu-
tational length quite significantly. So, a compromise between
the accuracy and computational load suggested choosing a grid
of 200× 200 for Venus. As will be shown in the next subsec-
tion, the selected hardware has a pixel angular size of 67 arc
sec. Since Fig. 1 shows that the minimum observable radius for
Venus is approximately 15 arc sec, this selected grid allows us
to represent the shape of the planet with at least 45 subpixels,
which is reasonable in terms of accuracy. The apparent size
of Jupiter is always above 30 arc sec, meaning that a subgrid
of 100× 100 is sufficient to always describe the shape of the
planet. With the subpixel grid, it is possible to simulate the
illumination condition with sufficiently good accuracy and
finally to blur the image. Once the image has been blurred, the
subpixels are summed up in order to compute the percentage
of total electrons that hits each pixel. This is still not sufficient
to calculate the intensity of the pixel. To do so, it is possible to
calculate the apparent visual magnitude of the planet following
the approach reported in [7], and then, similarly to the process
used for stars, this value is converted first into the number of
electrons and finally to DN. The basic equation to approxi-
mate the apparent magnitude of a planet as a function of the
illumination condition is [7]

V = 5log10(r d)+ V1(0)+ c 1α + c 2α
2
+ . . . , (9)

where r is the planet’s distance from the Sun, d is the observer
distance, and α is the illumination phase angle. Each planet is
characterized by its own coefficients mostly based on Earth on
ground observation. As reported in [8], the sum of the terms
dependent on the phase angle can be referred to as phase law.
Venus apparent magnitude can be computed as
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Fig. 2. (a) Venus apparent magnitude as a function of observer distance and α. (b) Jupiter apparent magnitude as a function of observer distance
andα.

V = 5log10(r d)− 4.384− 1.044 · 10−3α + 3.687 · 10−4α2

− 2.814 · 10−6α3
+ 9.938 · 10−9α4,

(10)

V = 5log10(r d)+ 236.05828− 2.8191α + 8.39034 · 10−3α2,

(11)
where the first equation refers to illumination phase angles
below 160◦, while the second for larger values.

Similarly, Jupiter’s apparent magnitude can be
approximated as

V = 5log10(r d)− 9.395− 3.7 · 10−4α + 6.16 · 10−4α2,

(12)

V = 5log10(r d)− 9.428− 2.5log10
(

1.0− 1.507
α

180

− 0.363
( α

180

)2
− 0.062

( α

180

)3
+ 2.809

( α

180

)4

− 1.876
( α

180

)5
)
,

(13)

where the first equation applies to the illumination phase angles
below 12◦. Figures 2(a) and 2(b) show the apparent magni-
tudes of Venus and Jupiter as a function of the illumination
phase angle and of the distance planet-observer. The range of
distances has been chosen for each of the two planets consider-
ing an observer placed at a distance of 1 AU from the Sun. It is
important to remark that the star tracker is usually associated
with a Sun-exclusion angle, so part of these phase angle-distance
combinations is not actually observable. This depends espe-
cially on the characteristics of the hardware, and it usually
applies on a larger scale to inner planets. The discontinuity in
the Venus plot is related to the discontinuity in the equation.
This phenomenon is associated with forward scattering by
liquid droplets in Venus’ atmosphere [7]. Moreover, it has to
be remarked that the larger the illumination phase angle is, the
lower the precision of the magnitude value. While for Venus

it can be considered pretty accurate because a large portion of
illumination conditions can be experienced from Earth, the
same cannot be said for Jupiter, whose formula is based on obser-
vations of Cassini spacecraft and can be considered reliable up to
130◦ [7]. However, NEA missions would not encounter similar
illumination conditions.

The problem of detectability of planets or minor bod-
ies such as asteroids is well treated in [8], and it is a problem
intrinsically related to both apparent magnitude and hardware
characteristics.

C. Hardware Selection

The SIS needs the characteristics of the sensor and the lenses
as input, which define the range of performance of the algo-
rithms later described in the paper. There is a wide range of
CMOS sensors available on the market; however, the datasheet
is not always complete enough for simulations following the
approach described above, especially because of the background
noise description. Moreover, space applications require stricter
requirements in terms of testing and validation, especially
connected to radiation. For this reason, for this analysis and
application, the attention has been focused on the TELEDYNE
EV76C660 [9] as it is a CMOS sensor developed and tested
for space applications. Moreover, its datasheet is particularly
detailed and offers noise performance in two different scenarios,
which allows us to see how the noise impacts the accuracy of the
algorithm. The details of the sensor are reported in Table 1.

Some remarks are necessary. QE has been assumed con-
stant to 0.8. The QE profile as a function of the wavelength is

Table 1. TELEDYNE EV76C660 Main Characteristics

Resolution 1280× 1024 [pixels]
Pixel Size 5.3× 5.3 [µm]
Bit depth 10 [bits]
Qsat 8.4 [ke-]
Dark signal at 25C 31 [LSB/s]
Dark signal at 65C 600 [LSB/s]
QE at 400–700 nm 0.6–0.8
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reported in the datasheet. For λ> 450 nm, QE is above 70%,
while for λ= 500 nm, it is around 80%. Regarding noise, the
dark signal is usually associated with a combination of factors,
some of which cannot be completely modeled. As the majority
of dark current is dependent on the thermally induced electrons,
this process can be associated with a Poisson distribution. Again,
this is only an assumption, and a full characterization of the
sensor when it comes to real testing is required. Moreover, the
datasheet reports also dark signal non-uniformity (DSNU),
which characterizes a different response of every single pixel,
related to various aspects such as manufacturing. For example,
some rows or columns may be brighter than others. However,
this is a complicated value to be translated in a simulation as
the mean value reported in a datasheet does not really offer
information on how the non-uniformity is distributed across
the sensor. For this reason, in this analysis, it is neglected, but if
hardware-in-the-loop testing is possible, it will be important to
characterize it. Sensors typically have a variety of exposure times,
and determining the best value requires some analysis. When
dealing with highly dynamic conditions, the setting of exposure
time becomes crucial. It must ensure that light information does
not spread across numerous pixels, while still providing a signal
that can be detected above the noise. In [10], exposure time is
optimized to minimize errors in star centroiding under highly
dynamic conditions. In more static situations, such as optical
navigation during deep-space travel, the exposure time setting
is somewhat less critical but can still be optimized. To maxi-
mize performance, both the distribution of dark noise and the
saturation limit must be taken into account. A standard value
of 100 ms was assumed in this analysis as no detailed DSNU
distribution was available.

The chosen lens is the MVL16M23 [11] as it is compatible
with a sensor with form factor 1/1.8 in. and because it allows us
to have a vertical FoV of approximately 20◦, which is compliant
with the application, as the final goal is to implement these
algorithms for deep-space missions. Usually, these are associated
with cruising in the same plane as the ecliptic. Implementing
a passive navigation strategy is based on avoiding or limiting
the reorientation of the satellite to observe visible bodies. So, in
order to maximize the observability time length, the camera’s
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Fig. 3. Venus’ elevation angle as a function of time.

Table 2. MVL16MR Characteristics

Focal length 16 [mm]
Aperture diameter f /1.4 [mm]
Transmissivity at 350–750 nm 0.8

boresight direction should lay in the ecliptic plane. Then, a
vertical FoV of at least 20◦ ensures that Venus’ elevation is never
outside the FoV. In fact, Venus’ orbit presents an inclination of
3.39◦. Figure 3 shows the evolution of Venus’ elevation with
respect to the ecliptic, considering an observer coincident with
the Earth. Moreover, and this is clear, the larger the FoV is, the
larger the number of stars that can be detected, but this will be
discussed in the next section.

The characteristics of the lens system are reported in
Table 2. The transmissivity value is averaged in the considered
bandwidth.

3. ATTITUDE ESTIMATION CHAIN DESIGN

The design of star tracker algorithms for attitude estimation is
a topic that has been widely investigated in recent years. The
complete attitude estimation chain can be divided into fun-
damental intermediate steps: star detection, centroiding, star
identification, and rotation matrix estimation. During the star
detection process, the 2D image is scanned to look for bright
pixels that can be associated with the presence of a star. It is
common practice to associate with a pixel the presence of a star
when its DN is larger than the mean DN of the dark background
plus 5 times its standard deviation [12]. In addition, to reduce
the number of operations, a pixel is saved as a candidate star
if its DN is larger than its neighboring pixels’ DN. However,
this is a limitation for those stars that can saturate more than
1 pixel, but they are so few that they can be treated separately.
For all the candidate stars, the centroid needs to be computed.
Centroiding is the process of analyzing the intensities of pixels
belonging to a candidate star to define as accurately as possible
the location of the center within the brightest pixel. Once a list
of candidate stars’ centers has been defined, 2D coordinates shall
be associated with an ID of a star. This process is usually done
by matching some angular characteristics of star patterns with
a precomputed matching catalog, stored onboard. Finally, the
rotation matrix between the inertial and body reference frames
can be computed by solving the well-known Wahba’s problem
(WP) [13], which is meant to minimize the following index:

J(R)=
1

2

N
6

k=1
||wk − Rvk ||

2, (14)

where N is the number of measurements, wk represents the
inertial reference vectors, vk represents the measured directions
in the body frame, and R is the rotation matrix from the body
to the inertial frame, which characterizes the attitude of the
spacecraft.

In the following subsections, each intermediate step is ana-
lyzed in order to define the most appropriate algorithm as a
function of the mission scenario. In fact, the deep-space cruising
navigation scenario does not require necessarily high-speed
algorithms, which are on the other hand needed for attitude
determination systems of satellites devoted to Earth observation
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Fig. 4. Cumulative Attitude Estimation error as a function of the
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or communication. So speed performance can be partially sac-
rificed if this implies higher attitude estimation performance,
which directly reflects in better navigation performance. As
shown in [1], the LoS measurement error is the trigger param-
eter for navigation accuracy. For this reason, for the algorithm
selection process, improved accuracy will be the final objective.

A. Centroiding Algorithm Selection

Before diving into the definition of the most appropriate algo-
rithm for computing the center of a star, it is interesting to
analyze how different parameters impact the accuracy of the
attitude estimation. First, it is possible to relate two important
parameters: the accuracy of the 3D unit vector of a star and
the number of stars in the FoV. Figure 4 shows the behavior of
the cumulative attitude estimation error, defined as the sum
of roll, pitch, and yaw angle errors, as a function of the number
of stars in the FoV and the error on the 3D unit vector. It can
be highlighted that, to obtain a performant attitude estimation
system (e.g., well below 50 arc sec), the number of stars should
be at least 15, and the angular error is possibly below 5 arc sec.

Concerning the number of stars in the FoV, this is highly
dependent on both the actual FoV and the limiting magnitude
defined by the hardware characteristics. Figure 5 shows the
number of stars in the FoV for an observer placed on the ecliptic
with the camera’s boresight in the same plane, as a function of
the azimuth of the boresight direction, for the vertical FoV of the
camera system considered in this paper.

For example, with a limiting magnitude of 6, the minimum
number of stars in the FoV is around 15, which is compliant
with our previous requirement.

Finally, also the pixel size plays a role, as shown in Fig. 6.
Clearly, the lower the pixel size is, the lower the error in the 3D
unit vector with the same 2D error in pixel units. As the plot
shows for a 5 micron pixel size, it would be optimal to have a
centroiding error below 0.05 pixels.

In this work, two centroiding algorithms are analyzed. The
first is the standard center-of-gravity (CoG) method. The center
is defined as
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Fig. 6. 3D angular vector as a function of the 2D u-component
error in pixels.
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n
6
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I (uk, v j )

, (16)

where uc and vc are the 2D coordinates, I (uk, v j ) is the DN
of the pixel, uk and v j are the pixel coordinates, and n is the
size of the region-of-interest (ROI). This is always the quickest
method; however, it is usually associated with lower centroiding
performance.

The second is a least squares fitting method (LSFM). For each
component (u, v), the process is the following. First for each
row or column in the ROI, a marginal is defined as
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Fig. 7. (a) CoG performance as a function of star magnitude and PSF radius. (b) LSFM performance as a function of star magnitude and PSF
radius.

Im,ui =
nb
6

j=−nb
I (ui , v j ), (17)

where I (ui , v j ) is again the intensity of a given pixel, while nb is
the radius of the ROI, considering I (u0, v0) as the central pixel.
Then, the least squares problem is formulated as

S(β)=
nb
6

i=−nb
(Im,ui − f (ui , β))

2, (18)

where β = (a , uc , σu) is the vector containing the unknown
parameter, including the center of the star. The function f
corresponds to the Gaussian blurring and can be written as

f (ui , β)= ae
−(ui−uc )2

2σ2
u . (19)

To solve for the center of the star (uc , vc ), the
Levenberg–Marquardt algorithm can be used.

For this analysis, a 3× 3 ROI has been selected, and as for
many star magnitudes, the noise would be predominant in outer
pixels, risking the accuracy to be lower. However, larger ROI
(5× 5) in low noise conditions could be an option.

To compare the two centroiding algorithms, the intrinsic
properties are explored by removing the background dark cur-
rent noise and testing the algorithms on the actual number of
electrons read by the detector (following the approach defined
in Section 2). In this way, also the quantization noise is removed
from the analysis.

Figures 7(a) and 7(b) show the error as a function of the
intensity of the star and the σPSF for the two methods. The CoG
method has an optimal spreading radius around 0.5 pixel, while
LSFM has a larger dependancy on the magnitude. Comparing
the two, it is clear that the LSFM offers better centroiding
performance, for a wide range of radius, so it is the selected
algorithm for the chain. Moreover, for the rest of the analysis,
the blurring radius is set to 1 pixel.

B. Star Identification

Star identification is the process of associating an ID to each
spotted star in the image so that later on the unit vectors can

be compared to their corresponding inertial ones to estimate
the rotation matrix. Through the years, this has been suffi-
ciently investigated and consolidated. There is a wide range of
identification algorithms, ranging from brightness based, to
neural networks, up to the most common ones based on geo-
metric features matching. Surveys of methods can be found in
[14,15], comparing the advantages and disadvantages of various
algorithms depending on the scenarios where the spacecraft
is operating. An example is given by the algorithm proposed
in [16], which is characterized by a large number of false stars,
so robustness against falsely detected stars is needed. In gen-
eral, together with robustness, speed and matching catalog
size are the parameters that will be investigated to select the
most appropriate algorithm. In this application, as remarked
in Subsection 3.A, speed is not a priority for the cruising per se,
but catalog size and robustness are. A triangle-based matching
algorithm has been developed because of its robustness and
limited catalog size, which is fundamental in this application
considering that planetary ephemerides will be stored as well
onboard. Another option would have been a Polestar algorithm
[17], or one of its derived methods; however, the increase in
robustness is not worth a sufficiently larger catalog (as both
pattern and geometric characteristics catalogs will be built).
Moreover, even if speed is not the main trigger for the selection,
the Polestar in the original paper has been proved to be 6 times
slower than a triangle matching method based on the original
Liebe’s algorithm [18]. The triangle matching method exploited
in this work is an extension of the algorithm presented in [19].
The method is based on defining three geometrical quantities
characterizing a triplet of stars (Fig. 8).

The central star defines an angle γ with its two neighou-
boring stars. Then the angular distances between the central
star and the two neighoboors can be used. However, despite in
the original Liebe’s method the 2D projections being used, in
[19] it has been found that defining 3D quantities can help the
distribution of the catalog to be uniform and being more precise.
So Fig. 8 shows the 3D formulation of the star triplets. First,
sin(α) and sin(β) can be defined as

sin(α)= ||Eua × Euc ||, (20)
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Fig. 8. Stars triplet geometrical features.

sin(β)= ||Eub × Euc ||. (21)

Then, the definition of γ is slightly more challenging, and it
starts by defining

Ey ta = Eua − Euc (Eua · Euc ), (22)

Ey tb = Eub − Euc (Eub · Euc ), (23)

and finally

γ = atan2(||Euta × Eutb||, Euta · Eutb), (24)

where atan2 in coding language is a variant of the arctan func-
tion, whose value is contained between −π and +π . To build
the onboard catalog, only stars with minimum brightness 6 have
been considered. If magnitude 7 was considered as the limit, the
catalog would have been trice larger; however, in the magnitude
range 6–7, usually stars are not always recognizable with a larger
noise. Moreover, as shown in Fig. 5, there are always at least 15
stars with a magnitude below 6 in the FoV. The other parameter
to be set is the number of neighbor stars with which a pattern
is computed and recorded in the catalog. Again a compromise
for the length of the catalog is to have 12 close stars, which leads
to 66 triplets for each star, which leads to a catalog length of
300,894 patterns.

For identification, each triplet of stars can be arranged in six
different combinations. All the combinations are compared to
the catalog, and for those, the IDs of the stars composing the
triplet that has the better match are recorded. To match a pattern
γ , sin(α), and sin(β) should be within a threshold. Then, if
multiple patterns are matched, the one with the lowest root
mean square (RMS) is recorded as a candidate. Finally, for each
candidate star, the assigned ID is the one with more hits, if they
are at least three.

C. Wahba’s Problem Solver

Once a sufficient amount of stars has been identified, the process
of comparing the 3D unit vectors of those stars with their helio-
centric ones is used to find the rotation matrix and, therefore,
to estimate the attitude. To solve the WP, several algorithms
have been presented: Davenport-Q, Quest, singular-value
decomposition (SVD), and many more [20]. The SVD method
is consolidated as it gives the best possible accuracy, together

with numerous other advantages such as its stability and the
possibility of providing the expected accuracy.

First, the matrix N is defined as

N = B RT
=

n
6

k=1
vkw

t
k, (25)

which can be decomposed with an SVD as

N =U6V T , (26)

and finally the optimal rotation matrix can be found as

Ropt =U MV T , (27)

where M= [1, 0, 0; 0, 1, 0; 0, 0, det(UV)].

4. PLANET CENTROIDING

Planet centroiding is the process of determining the center of the
planet imaged on the sensor. As shown in the previous section,
planets are significantly brighter than the average star, which
means that, with the same exposure time, the pixels can saturate
more easily. So, counterintuitively, the blurring is helping also
planets, despite their discrete apparent size, as the central pixels
will be often saturated. For planet centroiding, again two macro-
categories of algorithms are possible. A basic CoG algorithm is
the easiest to be implemented, while a fitting method, similar
to the one implemented for star centroiding, is slightly more
difficult. This is because, for point-source light information, a
simple relation can be established between the pixel intensity
and the center. For a discrete element like a planet, this function
is a combination of two functions: the shape function and the
blurring function. To have an accurate solution, in the fitting
process, the planet should be discretized in a sufficient number
of point-source emitters, which makes the algorithm compu-
tationally expensive. On the other hand, a CoG method, in
combination with the blurring, offers sufficient performance
when the full disk is visible, while the error deteriorates in harsh
illumination conditions.

To solve this issue, two approaches are investigated: a “brute
force” and an analytical one. The brute force method is the
least elegant, as it is based on associating to the observation of
some correction tables, precomputed based on hardware char-
acteristics that are entered with the illumination phase angle.
This method has some limits as the number of scenarios stored
onboard is limited and it requires interpolating numbers. Of
course, despite being the least elegant, it may be computation-
ally cheaper, and if the hardware is properly characterized, it can
provide very good accuracy. Figure 9 shows the correction table
for Venus. An option can be to report the correction for three
typical distances and then interpolate depending on the actual
mission scenario.

On the other hand, it has been possible to derive an analytical
formulation for the correction shift as a function of the illumina-
tion condition. Looking at a sphere in the 3D frame (Fig. 10), it
is possible to write the equation of the terminator line as a func-
tion of the illumination angle. This can be done by intersecting
the equation of the sphere and the plane perpendicular to the
illumination vector. If then this is projected in the observation
plane, the equation of the terminator lines is
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Fig. 9. Venus centroiding correction, simulated results as points,
and analytical results as lines. Small distance in blue, medium distance
in red, and large distance in yellow.

Fig. 10. Visualization of the illumination angle.

f s (x )=
√

R2 − x 2, (28)

fis(x )=
√

R2 − x 2(1+ tan θ2), (29)

where R is the sphere radius and θ is the illumination angle.
With these equations, it is possible to calculate analytically the
center of gravity of the planet as

upc =

∫
u f s

+

−

∫
u fi s∫

f s
+

−

∫
fi s

. (30)

By integrating this equation and simplifying, we reach the fol-
lowing formulation:

ushift =
+

−

4

3
R

√
c

πc
c − 1
√

c +
−

1
, (31)

with

c =
(
1+ tan θ2) , (32)

which gives as output the shift that has to be applied to the
computed center of gravity as a function of the apparent radius
of the planet and the illumination phase angle. Figure 9 shows
the computed shift for the observation of Venus. As can be seen,
it matches the behavior of the correction table.

However, before diving into the numerical results, it is impor-
tant to highlight some aspects. Due to the pixel quantization and
pixel saturation, the centroiding algorithm and the IC algorithm
are not the only actors playing a role. With the same observation
condition, the actual planet’s center location within the single
pixel influences the distribution of light among the pixels, which
in combination with pixel quantization and saturation creates
a variable behavior of the centroiding error. As an example,
Figs. 11(a) and 11(b) show the behavior of the centroiding
error as a function of the pixel center in four observation con-
ditions of Venus. The plots show how the shift in the center’s
u-component within pixel 640, which is central in the selected
sensor, generates a variable centroiding error. Figure 11(a) shows
this behavior for small and large distances of the observer for an
illumination phase angle of 60◦. The oscillation is in the order
of 0.03 pixels, but it is important to notice that, despite the
oscillation, the IC algorithm keeps reducing the computation
error. On the other hand, Fig. 11(b) shows the same for a poorer
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Fig. 11. Venus centroiding error as a function of the center location for illumination phase angle 60◦ (left). Venus centroiding error as a function of
the center location for illumination phase angle 150◦ (right).
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Fig. 12. Venus observation complete chain testing with SIS.

illumination condition with phase angle 150◦. In this case, the
error is larger and is in the order of 0.08 pixels. In this case, the
IC algorithm is only partially able to contain the error in some
location; nevertheless, the overall performance is still slightly
improved.

These plots are not meant to fully characterize all the possible
combinations of behavior but are meant to explain that the
actual center of the planet within the pixel might play a role
and influence the accuracy of the centroiding as oscillations
within 0.05 pixel might occur. This value may seem small, but
actually it corresponds to few arc sec, posing a limitation in
cutting down below to 0.1 arc sec accuracy. This is, however, an
“uncontrollable” parameter with state-of-the-art technologies
for CubeSats, as it would require an extremely high pointing
accuracy.

5. COMPLETE TESTING

This section is intended to show the results of testing the full
LoS extraction chain with the SIS. To do so, the observer has
been considered coincident with Earth’s position on the first day
of each month between 2024 and 2028. As the center within
the pixel has been explored in the previous section, the center
of the planet has been considered perfectly aligned with the
boresight direction of the sensor. The results are presented as
either the mean value or standard deviation for a Monte Carlo
simulation with 40 trials. First, the results of Venus observation
are presented, and then Jupiter. In both cases, high noise and low
noise scenarios have been considered, giving priority to the low
case. Figure 12 shows the results of a full chain testing for Venus
observation.

A. Venus Observation

For the larger noise case, the attitude estimation results are pre-
sented in Fig. 13. As was expected, the roll error is significantly
larger than the pitch-yaw ones, which are very close to each
other. In general, the peaks of the roll error are associated with an
average lower number of observed stars.

Regarding the planet centroiding, results are shown in
Figs. 14(a) and 14(b). Figure 14(a) shows the mean centroiding
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Fig. 13. Attitude estimation standard deviation as a function of the
observation time (Venus high noise case).

error at each observation scenario. This shows how in a large
majority of scenarios the IC algorithm works perfectly, while in
extremely poor observation conditions it induces a small bias
in the centroiding. Figure 14(b) shows that, despite the bias
of the IC algorithm, most of the observation scenarios have a
σ in the order of 0.002 pixels, while in a few cases, it is 6 times
larger. These observation scenarios are, however, associated
with an illumination phase angle very close to 180◦, which
in realistic mission scenarios will not be observed because the
Sun-exclusion angle cannot be guaranteed.

Remarking that the main goal of this algorithm is to pro-
vide the navigation filter with the direction of the object in
a heliocentric frame, it is possible to compute the difference
between the azimuth and elevation and the computed one. This
is because the actual navigation algorithm runs optimally with
the measurement fed as azimuth and elevation computed in a
heliocentric frame. This allows us also to observe the actual link
between attitude estimation and the planet’s centroiding. So,
Figs. 15(a) and 15(b) show, respectively, the mean and standard
deviation of both. As can be noticed, the mean value has a bias
in the proximity of poorly illuminated conditions, and the σ
have peaks corresponding to the pick of the u-component error.
The additional oscillations are then related to the combination
of the planet’s centroiding and attitude estimation. This again
testifies that, for a navigation analysis, the two cannot be com-
pletely separated, and assuming a constant σ for azimuth and
elevation measurements, it is a limiting approach. Moreover, it is
important to remark how, in the vast majority of the cases, both
azimuth and elevation have a mean value error between−1 and
1 arc sec, while the standard deviation is between 1 and 2 arc sec.
This, according to the results presented in [1], shows that this
method is appropriate to achieve position estimation error well
below 1000 km.

For the low noise case, as could be expected, the attitude esti-
mation is improved. This is linked both to a better centroiding
performance and also to a slightly larger average number of iden-
tified stars, as shown in Fig. 16.

These differences result in a lower roll, pitch, and yaw lower
estimation error, as depicted in Fig. 17.
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Fig. 14. Venus centroiding (a) error mean value and (b) error standard deviation.
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Fig. 15. Venus azimuth and elevation (a) error mean values and (b) standard deviation.
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Fig. 16. Average number of identified stars as a function of the
observation time for Venus observation test case.

0 200 400 600 800 1000 1200 1400
Time passed since 01-01-2024 [days]

0

0.5

1

1.5

2

2.5

3

3.5

4

E
rr

or
 [a

rc
se

c]

Pitch
Yaw
Roll

Fig. 17. Attitude estimation standard deviation as a function of the
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Fig. 18. Venus centroiding error standard deviation (low noise) (a). Azimuth and elevation error standard deviation (b).
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Fig. 19. Attitude estimation standard deviation as a function of the
observation time (Jupiter high noise case).

These reflect also in the computation of the centroiding and
then the azimuth and elevation of the body direction. As has
been described before, in correspondence with poor illumina-
tion conditions, there are some centroiding biases, which are
almost independent of the noise, and in fact, in this low noise
example, they are comparable with the high noise case. On the
other hand, the σ is significantly lower, and this is important
as, with the exception of a very poor observation scenario, the
low noise case produces extremely accurate measurements to
feed the navigation filter. Figures 18(a) and 18(b) show the cen-
troiding as well as the azimuth and elevation standard deviation
results, respectively.

B. Jupiter Observation

The same approach has been used to exploit Jupiter observation.
The attitude estimation error for the high noise case is shown
in Fig. 19. Similar values to Venus observation are obviously

obtained. It is worth noticing that the first half of the simulation
has a higher number of stars in the FoV, which reflects in better
accuracy.

Jupiter’s centroiding has better performances because, with
an observer placed at 1 AU from the Sun, the observation does
not experience particularly poor illumination conditions. The
results are presented in Figs. 20(a) and 20(b).

Finally, the computation of azimuth and elevation is again
accurate, and results are presented in Figs. 21(a) and 21(b).

Again, similarly to Venus for the lower noise case, perfor-
mances are improved. Respectively, attitude estimation error,
centroiding standard deviation and measurements, standard
deviation results are shown in Figs. 22, 23(a), and 23(b).

6. CONCLUSION AND FURTHER
DEVELOPMENT

This paper presents a complete overview of the simulation,
design, and performance evaluation of star tracker algorithms
for autonomous LoS navigation. This work can be considered a
necessary piece of the road map toward the implementation of
this navigation technique in real missions, especially in minia-
turized spacecraft where autonomy during all mission phases
is fundamental. First, the SIS theory available in literature
has been improved in order to target the simulation of small
disk planetary objects, which is relevant for LoS navigation in
deep-space. Then, the current state-of-the-art attitude deter-
mination algorithms have been investigated and selected in
order to design an appropriate attitude estimation chain, which
maximizes the performance in deep-space cruising scenarios.
Then, two approaches for planet centroiding and IC have been
proposed. Finally, the complete image processing chain has
been evaluated in different relevant scenarios for deep-space,
in particular for the observation of Venus and Jupiter. The
observer has been placed at 1 AU distance from the Sun to
represent NEA missions; however, different distances in other
scenarios may slightly affect the error estimation. Results have
shown that promising performance can be expected by the LoS
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Fig. 20. (a) Jupiter centroiding error mean value. (b) Centroiding error standard deviation.

0 200 400 600 800 1000 1200 1400
Time passed since 01-01-2024 [days]

-1

-0.5

0

0.5

1

1.5

E
rr

or
 m

ea
n[

ar
cs

ec
]

Azimuth
Elevation

(a)

0 200 400 600 800 1000 1200 1400
Time passed since 01-01-2024 [days]

0.5

1

1.5

2

2.5

3

E
rr

or
 S

ta
nd

ar
d 

D
ev

ia
tio

n[
ar

cs
ec

]

Azimuth
Elevation

(b)

Fig. 21. (a) Jupiter Azimuth and Elevation error mean values. (b) Azimuth and elevation error standard deviation.
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Fig. 22. Attitude estimation standard deviation as a function of the
observation time (Jupiter low noise case).

extraction in terms of azimuth and elevation as, in the majority
of the illumination observation scenarios, the measurement
computation is in the range of 1–2 arc sec for the high noise case
and reduces below 1 arc sec in a low noise case. However, it is
important to remark that the actual planetary locations within
the single pixel, in combination with hardware characteristics
such as saturation limit and quantization, do play a role, and
they can slightly lower the performance. Moreover, this study
has assumed a perfectly calibrated camera, and further analysis
needs to be performed to derive the influence of lens distortion
when they are not properly taken into account.

In the future, validating the algorithms on actual space images
will be needed to finally prove the applicability of this technique
in deep-space missions. To conclude, this work can be consid-
ered the first stepping stone for a complete navigation analysis,
which includes in-the-loop the generation of synthetic images
and proves that the reachable accuracy of azimuth and elevation
is compliant with the mission navigation requirements for deep-
space applications as measurement error in the order of few arc
sec would allow positioning error well below 1000 km [1].
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Fig. 23. Jupiter centroiding error standard deviation (low noise) (a). Azimuth and elevation error standard deviation.
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