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To better understand the interactions between material
perception and light perception, we further developed
our material probe MatMix 1.0 into MixIM 1.0, which
allows optical mixing of canonical lighting modes. We
selected three canonical lighting modes (ambient, focus,
and brilliance) and created scenes to represent the three
illuminations. Together with four canonical material
modes (matte, velvety, specular, glittery), this resulted in
12 basis images (the ‘‘bird set’’). These images were
optically mixed in our probing method. Three
experiments were conducted with different groups of
observers. In Experiment 1, observers were instructed to
manipulate MixIM 1.0 and match optically mixed lighting
modes while discounting the materials. In Experiment 2,
observers were shown a pair of stimuli and instructed to
simultaneously judge whether the materials and
lightings were the same or different in a four-category
discrimination task. In Experiment 3, observers
performed both the matching and discrimination tasks in
which only the ambient and focus light were
implemented. Overall, the matching and discrimination
results were comparable as (a) robust asymmetric
perceptual confounds were found and confirmed in both
types of tasks, (b) performances were consistent and all
above chance levels, and (c) observers had higher
sensitivities to our canonical materials than to our
canonical lightings. The latter result may be explained in
terms of a generic insensitivity for naturally occurring
variations in light conditions. Our findings suggest that
midlevel image features are more robust across different
materials than across different lightings and, thus, more
diagnostic for materials than for lightings, causing the
asymmetric perceptual confounds.

Introduction

The appearance of an illuminated object is deter-
mined by its surface geometry (shape), its surface
reflectance characteristics (material), and the illumina-
tion (lighting). With arbitrary combinations of mate-
rial, shape, and lighting, the outcomes are difficult to
predict. In computer graphics, given models for the
shape, illumination, and material and enough compu-
tational power, an object can be precisely rendered by
calculating the amount of illumination received by the
hypothetical camera (‘‘forward optics’’). One classic
approach that explains how the human visual system
estimates physical properties is called ‘‘running physics
in reverse’’ or ‘‘inverse optics’’ (Marr, 1982; Pizlo, 2001;
Poggio & Koch, 1985; Poggio, Torre, & Koch, 1985).
For material perception, using such an approach, the
visual system would need to discount the lighting and
shape while estimating the material. To do so, the
visual system also would need to discount the material
before it could estimate the lighting or the shape. Thus,
this is a ‘‘chicken and egg’’ problem. Instead, we take as
a given that shape, material, and lighting perception are
perceptually confounded. Separate studies have been
done on how humans visually perceive shapes, mate-
rials, or lightings, yet little is known about the
interactions between shape, material, and lighting
perception. Varying one of the three elements could
result in systematic changes of appearance and, thus,
could trigger systematic changes of light, material, and
shape perceptions, and varying two or three of the
elements simultaneously could result in similar ap-
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pearances and, thus, trigger ambiguities (Dror, Adel-
son, & Willsky 2001; Morgenstern, Murray, & Harris,
2011; Pont & te Pas, 2006; te Pas & Pont, 2005; Zhang,
de Ridder, & Pont, 2015). In this study, we focus on the
interactions between lighting perception and material
perception. In order to simplify the problem, we kept
the shape of our stimuli constant, limited the study to
opaque materials, and systematically varied materials
and lightings.

Canonical lighting modes

Unlike in physics, light in space and the visual
perception of its properties have not been intensively
studied in psychophysics (Schirillo, 2013). Koenderink,
Pont, van Doorn, Kappers, and Todd (2007) intro-
duced a light probe to measure light perception. They
placed a gauge object into a scene and asked observers
to adjust the appearance of the probe such that it
visually fit into the scene. Ever since then, progress has
been made in measuring how humans estimate illumi-
nation properties, such as the relative intensity,
direction, diffuseness, and color (Kartashova, de
Ridder, te Pas, Schoemaker, & Pont, 2015; Kartashova,
Sekulovski, de Ridder, te Pas, & Pont, 2016; Koen-
derink et al., 2007; Morgenstern et al., 2011; Toscani,
Gegenfurtner, & Doerschner, 2017; Xia, Pont, &
Heynderickx, 2013, 2014). Another approach is to use
images of shaded objects as stimuli to investigate the
perception of illumination properties, such as direction
and diffuseness (Morgenstern, Geisler, & Murray,
2014, 2015; Pont & Koenderink, 2007; Xia et al., 2014),
position of the light source (Schütt, Baier, & Fleming,
2016), complex 2-D light fields (van Doorn, Koender-
ink, & Wagemans, 2011), and complex natural 3-D
light fields (Kartashova et al., 2016). Numerous studies
implemented variation of illumination for measuring
shape or material perception (e.g., Doerschner, Boyaci,
& Maloney, 2010; Dror, Willsky, & Adelson, 2004;
Fleming, Dror, & Adelson, 2003; Ho, Landy, &
Maloney, 2006, 2008; M. Kim, Wilcox, & Murray,
2016; Marlow, Kim, & Anderson, 2012; Motoyoshi &
Matoba 2012; Olkkonen & Brainard, 2010; Pont & te
Pas, 2006; Wijntjes & Pont, 2010; Zhang et al., 2015)
and found out that illumination influenced the judg-
ments of shape and materials. Yet whether or not
observers could perceive the changes of illumination
remained unknown. In addition, the lightings involved
in the abovementioned studies were mostly arbitrary
complex natural luminance maps.

Mathematically, a light field can be described by five
parameters h;u; x; y; zf g that describe the luminance
for all directions and throughout the space (note that
we neglect color and time for simplification). For a
given position (knowing x; y; zf g), the local light field

can be defined by just two parameters h;uf g that define
the directions. Thus, the local light field can be defined
as a spherical function and reconstructed by the sum of
its spherical harmonics (SH): f h; uð Þ ¼

P‘
l¼0 SHl,

where l is the order of the angular mode (Mury, Pont,
& Koenderink, 2007; Xia, Pont, & Heynderickx, 2016).
The zeroth-order SH component (SH0) is known as the
‘‘light density,’’ and the first order SH component
(SH1) is known as the ‘‘light vector’’ (Mury et al.,
2007). The diffuseness of a local light field can be
calculated by subtracting the ratio of the powers of
light vector SH1 and light density SH0 from one (Xia’s
diffuseness metric; see Xia, Pont, & Heynderickx,
2017a, 2017b). It ranges from zero, the most directed
light, to one, the most diffuse light. In architectural
perception-based lighting design, many designers build
up their light plans in three canonical modes (Gans-
landt, & Hofmann, 1992; Kelly, 1952), namely ambient,
focus, and brilliance light. Phenomenologically, these
modes correspond to the zeroth-, first-, and higher
(than second) order components of the SH decompo-
sitions of the local light fields in physics (Mury, 2009).
In this study, we implemented three canonical lighting
modes by creating scenes representing the three
abovementioned illuminations. The second order of the
SH component of the physical light field is known as
the ‘‘squash tensor,’’ which we did not recreate in our
laboratory environment. We ignored this component
here because, in lighting architecture, it is not
‘‘designed’’ or addressed explicitly, probably because
this component mostly comes from inter-reflections in
natural scenes (Mury et al., 2007).

Canonical material modes

In material-perception studies, we are trying to
understand to what extent and how we are able to
recognize what things are made of (material categories,
such as fabric, paper, plastic, etc.) or to make subjective
judgments about the physical characteristics (material
qualities, such as soft, smooth, glossy, etc.) or to
attribute concepts to certain materials (material mean-
ings, such as aggressive, nostalgic, industrial, etc.). In
the material-perception literature, most often, com-
puter graphic renderings are being used as stimuli,
especially for materials within the glossy–matte varia-
tion. Computer graphics allows users to manipulate a
large number of parameters to vary the geometry and
surface reflectance of a 3-D object as well as the
illumination to create stimuli sets. Using parametric
models, it is calculated how incident light scatters from
surfaces, resulting in a certain appearance of the
rendered objects. It allows systematic control over the
changes in the stimuli and, thus, often gives results that
can be easily interpreted, but yet it consumes quite an
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amount of computational power and sometimes
generates images that appear unnatural or unrealistic.
Because existing models (Blinn, 1977; Cook & Tor-
rence, 1982; Ward, 1992) simulate glossy materials well,
perceived glossiness has been studied intensively
(Anderson & Kim, 2009; Fleming et al., 2003; Ho et al.,
2006; J. Kim, Marlow, & Anderson, 2011; Marlow et
al., 2012; Motoyoshi et al., 2007; Nishida & Shinya,
1998; Pellacini, Ferwerda, & Greenberg, 2000; Van-
gorp, Laurijssen, & Dutré, 2007). There are also some
studies addressing how we perceive other (opaque)
material qualities, such as velvetiness (Koenderink &
Pont, 2003; Nishida, Sawayama, & Shimokawa, 2015).
Other approaches include using real and photographed
objects for glossiness perception (Hansmann-Roth,
Pont, & Mamassian, 2017; van Assen, Wijntjes, &
Pont, 2016), material categorization (Fleming, Wiebel,
& Gegenfurtner, 2013; Sharan, Rosenholtz, & Adelson,
2009, 2014), or meaning attribution (Karana, Hekkert,
& Kandachar, 2009).

We previously developed a material probe, MatMix
1.0, and found that it provided a perceptually intuitive
measuring tool (Zhang, de Ridder, Fleming, & Pont,
2016). It was integrated in an interface for matching
tasks, which allowed measurements of material per-
ception in a purely visual and quantitative way. The
probe implements optical mixing of four canonical
material modes, namely matte, velvety, specular, and
glittery. Each of them represents a very different
surface scattering mode, and altogether they span a
large part of the bidirectional reflectance distribution
function (BRDF) space. In a previous study imple-
menting MatMix 1.0, observers were asked to adjust
the material probe and match the material to that of the
stimuli, which were optical mixtures of photographs
taken under one of three canonical lighting modes
(Zhang et al., 2015). Results showed systematic,
material-dependent influences of lighting on material
perception, which was confirmed in an extra experi-
ment using computer-rendered birds. In the current
study, we implemented the same set of photographed
basis images, the ‘‘bird set’’ (Figure 1), and conducted
light-matching experiments by adjusting the probe to
allow optical mixing of canonical lighting modes, i.e.,
by optically mixing the basis images per material
instead of per lighting.

To first answer to what extent observers can discount
material while matching optically mixed canonical
lighting modes, we conducted Experiment 1, in which
observers were asked to mix and match the lighting
modes of the probe to a mixed illumination in the
stimulus. The material modes in the stimulus and the
probe could be either the same or different. Observers
could only manipulate the illumination of the probe in
this task, not its material. In Experiment 2, using a
four-category discrimination task and a different group

of observers, we tested to what extent observers can
simultaneously discriminate materials and lightings.
They were shown a pair of basis images selected from
the 12 basis images shown in Figure 1 and asked to
make simultaneous judgments about whether the
materials were the same or not and whether the
illuminations were the same or not. In Experiment 3,
we compared the matching and four-category discrim-
ination tasks for a reduced stimulus set. A third group
of observers was asked to first finish a reduced version
of the matching experiment and then, after a short
break, a reduced version of the four-category discrim-
ination experiment. The reduction concerned removing
the brilliance light stimuli and keeping those of the
ambient and focus light, i.e., only using the images in
the first two rows in Figure 1.

Experiment 1: Can people discount
materials while matching lighting?

Methods

The MixIM 1.0 interface

In previous work, we found that even inexperienced
observers performed well above chance in matching
optically mixed materials using our MatMix 1.0
interface (Zhang et al., 2016). In this study, MatMix 1.0
was adjusted to MixIM 1.0 (mix illuminations and
materials) to allow light mixing and study whether
people can match optically mixed canonical lighting
modes for objects that are made of the same material or

Figure 1. The 12 basis images combining three canonical lighting

modes and four canonical material modes, i.e., the ‘‘bird set’’.
From left to right, each column represents a canonical material

mode (matte, velvety, specular, and glittery). From top to

bottom, each row represents a canonical lighting mode

(ambient, focus, brilliance). In the matching experiments of the

previous work, we optically mixed basis images per row such

that materials were optically mixed (Zhang et al., 2015). In the

current study, we optically mixed the basis images per column,

such that lighting was optically mixed in the stimuli and the

probe.
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different ones. In contradistinction to optically mixing
materials, mixing canonical lighting modes is actually
physically realistic. In the MixIM 1.0 interface (Figure
2), three sliders below the right image (probe) represent
the three canonical lighting modes, namely ambient,
focus, and brilliance light, respectively. How a golf ball
appeared under the corresponding light was shown
next to each slider to give observers a purely visual
reference about what each slider represents. The use of
a golf ball as a light probe (Kartashova et al., 2015;
Pont & Koenderink, 2007) was chosen because the
texture gradients due to the surface structure of the golf
ball helps to disambiguate the diffuseness and direction
of the light (Xia et al., 2014). In each matching trial, a
stimulus image (at left) and the probe image (at right)
were presented to observers in corresponding image
windows for comparison and matching. The interface
was developed using the graphic user interfaces features
in MATLAB R2014a (MathWorks, Natick, MA) and
presented to the observers on a linearly calibrated
Apple, Inc., 15-in. retina display.

Basis images

In our laboratory, we simulated the three canonical
lighting modes and took photographs of each canonical
material mode under each lighting mode (Zhang et al.,
2015) as already shown in Figure 1. For the ambient
light, we placed both the camera and the object into a
white photo tent and then took the photographs for

each canonical material mode. For the focus light, we
illuminated the object from the left upper side with a
halogen spotlight. For the brilliance light, we hung an
LED-strip (150 LEDs) surrounding the object. Note
that, in order to register the basis images when
performing optical mixing, it was important to keep the
same relative position between the objects and the
camera. This was done by attaching a horizontal, 1-m-
long camera slider on a tripod on wheels. The camera
was fixed on one side of the camera slider and the
object on the other side. The whole setup could then be
moved from one scene to another. The photograph was
calibrated by adjusting the white balance of the raw
images to set the highlights to be white. Then, to avoid
color interaction, we set the hue value to 0.33 (green)
for all images using MATLAB. The influence of the
hue transformation was negligible as the birds were
pure green (RAL 6018, except the glittery bird for
which the color was matched visually).

Stimuli

For Experiment 1, we designed seven weight
combinations of the three lighting modes as shown in
Table 1. Basis images in each column in Figure 1 were
linearly superimposed by implementing Equation 1 as
shown below, per material mode:

Istimulus material ¼ wambient � Iambient material þ wfocus

� Ifocus material þ wbrilliance

� Ibrilliance material; ð1Þ

where {wambient, wfocus, wbrilliance} are the weights of the
lighting modes (Table 1) and {Iambient material,
Ifocus material, Ibrilliance material} are the basis images shown
in Figure 1 with material denoting one of the four
canonical material modes: either matte, velvety, spec-
ular, or glittery. No linear combinations of materials
were used; i.e., the optical mixing of three lighting
modes were performed per material. As a result, the
linearly mixed stimulus image {Istimulus material} presents
matte, velvety, specular, or glittery material in a
combination of ambient, focus, and brilliance light. In
Figure 2, the top left image gives an example of

Figure 2. The interface of Experiment 1. Left: A stimulus image.

Right: The probe image. The material of stimulus and probe

could be the same or different (here they are different). The

three sliders represent the three canonical lighting modes. The

icon next to each slider visualizes the corresponding lighting

mode. The position of each slider bar represents a weight value,

ranging from zero to 1.2. The task of the observers was to move

the sliders to match the illumination of the probe image with

that of the stimulus image. In this figure, the illumination of the

probe image does not match the illumination of the stimulus

image.

No. wambient wfocus wbrilliance

1 1 0 0

2 0 1 0

3 0 0 1

4 0.5 0.5 0

5 0.5 0 0.5

6 0 0.5 0.5

7 0.33 0.33 0.33

Table 1. Weight of each canonical lighting mode in the stimuli
for Experiment 1.
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stimulus no. 7 for velvety material; i.e., the weights for
all basis images of the velvety bird were equal to 0.33.

Probe

In Experiment 1, observers could manipulate the
appearance of the probe image by moving the sliders
and, thus, perform the matching accordingly. The
probe image was also a linearly superimposed optical
mixing result of the basis images per material mode.
The mixing process can be illustrated by Equation 2:

Iprobe material ¼ w0
ambient � I0ambient material þ w0

focus

� I0focus material þ w0
brilliance

� I0brilliance material; ð2Þ

where {w0
ambient, w

0
focus, w

0
brilliance} are the weight values

corresponding to the positions of the slider bars in the
corresponding sliders (see Figure 2: the interface) and
{I0ambient material, I

0
focus material, I

0
brilliance material} are the basis

images shown in Figure 1 per material mode, which
could be either the same or a different material mode
than the material mode used in the stimulus image. No
linear combinations of materials were used in the probe
either. The linearly mixed probe {Iprobe material} allows
real-time dynamic and interactive variation of a visual
presentation of canonical lighting modes through
adjustments of the slider bars.

Procedure

The positions of the slider bars were randomly
initialized in each trial. The trials were presented in
pseudorandom order. At the start of the experiment,
observers were instructed that their task was to move
the sliders to adjust the appearance of the bird in the
top right window (probe) until it appeared to be in the
same illumination as the bird in the top left window
(stimulus). They were told that the materials could be
the same or different, so the task was not to match the
images themselves, but the illumination of the birds.
Three trials were performed as practice trials before the
first session started. In the practice trials, participants
were told that they could move the slider bars by
dragging the mouse or pressing the left and right arrow
keys on the keyboard. Moving the slider bars by
dragging the mouse resulted in bigger steps, and
pressing the arrow keys resulted in smaller steps and
more gradual changes in the probe. In the actual
experiment, four material modes in the probe image
were combined with four material modes in the
stimulus, resulting in 16 material combinations. To-
gether with seven weight combinations for the stimuli
lighting in the optical mixture (Table 1) per material
combination, there were 112 trials in total for each

observer. It took around 60 min to finish the
experiment.

Observers

We recruited four unpaid observers who had
participated in at least five psychophysical experiments,
and 11 paid inexperienced observers participated in
Experiment 1. The four unpaid observers are grouped
as ‘‘experienced’’ as they had participated in former
experiments working with the experimental interface.
All 15 participants had normal or corrected-to-normal
vision. Participants read and signed a consent form
before the experiments. The experiments were ap-
proved by the human research ethics committee of
Delft University of Technology and conducted in
accordance with the declaration of Helsinki and Dutch
law.

Analysis and results

Least squares fit

The matching performance using the MixIM 1.0
interface can be evaluated by solving the linear factor
matrix X of Equation 3 using least squares fitting:

P½ �33 1123Nð Þ ¼ X½ �33 3 � S½ �33 1123Nð Þ
þ E½ �33 1123Nð Þ; ð3Þ

S½ � ¼
wambient

wfocus

wbrilliance

2
4

3
5, the weights of the stimuli,

P½ � ¼
w0
ambient

w0
focus

w0
brilliance

2
4

3
5, the weights of the probe,

and the residuals e½ � ¼
eambient

efocus
ebrilliance

2
4

3
5.

In Equation 3, each row represents a canonical
lighting mode, specifically the ambient, focus, and
brilliance lighting mode from top to bottom. Per
observer, there were 112 trials, and together with the
number of participants N, there were in total 1123Nð Þ
columns in matrix S, matrix P, and matrix E. Each
column in matrix S represents the weights of the three
canonical lighting modes in the stimulus image, and the
corresponding column in matrix P represents the
weights of the three canonical lighting modes in the
probe image, i.e., the values represented by the
positions of the three sliders set by the observers. The 3
3 3 linear factor matrix X was solved using a least
squares fit in MATLAB, and then matrix E was the
subtraction between P and X � S. If the matching would
be veridical, X would be a 333 identity matrix, and the
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matrix E would be a zero matrix. The ratio r between
the sum of the diagonal values in X and the sum of X,
i.e., r ¼

P
diag Xð Þ=

P
Xð Þ, can be used to evaluate the

performance, ranging from zero (only possible math-
ematically) to one (veridical) with 0.33 being the chance
level.

Overall results

The overall results of all observers in Experiment 1 is
expressed as the linear factor matrix X, solved by least
squares fitting, and is shown in Table 2 (N ¼ 15). In the
matrix, the diagonal values are 0.63, 0.66, and 0.62 for
ambient, focus, and brilliance light, respectively, and
the nondiagonal values are all between 0.20 and 0.31,
so the matrix is dissimilar from an identity matrix. The
ratio r is 0.56, which is far above chance level (r ¼ 0:33,
see individual performance).

The performance per material combination in
stimulus and probe for all observers can be seen in
Figure 3. The plot shows the ratio r calculated per
material combination with the colors of the bars
coding the materials of the probe. Each subplot shows
results for one material of the stimulus (matte,
velvety, specular, and glittery from left to right with
labels on the x-axis coded in corresponding colors).
When the materials were the same in the stimulus and
the probe, the performances were closest to veridical
(r ¼ 1) in each subplot. When the materials were
different in the stimulus and the probe, the perfor-
mances were still above chance but less close to
veridical than when materials were the same. When
the velvety material mode was presented, irrespective
of whether it was in the probe or in the stimulus, the
results were the least veridical. This shows that
material differences decreased the performance of
matching optically mixed lighting modes. Thus, for
our very diverse material and lighting modes, there
were strong perceptual interactions between materials
and lightings.

Individual performance

The individual matching results (the histogram of the
ratios r for all observers) can be seen in Figure 4
(Mean ¼ 0:57, SD ¼ 0:14). It clearly shows that four
out of 15 observers performed just above chance level
(0.33), and the other 11 observers performed well above

chance; i.e., most of the observers were able to match
the optically mixed canonical lighting modes. The four
observers who performed just above chance level were
all inexperienced observers (colored in blue).

r ¼ 0:56 w0
ambient w0

focus w0
brilliance

wambient 0.63 0.22 0.31

wfocus 0.29 0.66 0.29

wbrilliance 0.20 0.22 0.62

Table 2. The linear factor matrix X in Equation 3 solved using the
least square method (N¼ 15).

Figure 3. Ratio r calculated per material combination of the

stimulus and the probe. The four subplots show the results for

matte, velvety, specular, or glittery stimuli from left to right,

respectively. The material of the probe is color-coded; see legend.

The y-axis represents the ratio r. Each ratio was calculated over

all data of the 15 observers per material combination. The error

bars depict one standard error of the mean.

Figure 4. Histogram of number of observers for the perfor-

mance ratio r. The red-colored bars are the results of four

observers who are experienced in psychophysical experiments.

The blue-colored bars are the results of 11 observers who had

no experience in psychophysical experiments at all.
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Perceptual interactions between canonical lighting
modes: Bivariation plot

Another way of interpreting the data from our
matching experiment is to visualize the interactions
between the basis modes in the mixtures. The interac-
tions between each combination of two lighting modes
were visualized by means of ellipses representing one
standard deviation values of bivariate normal distri-
butions fitted to the data for all observers for the 16
material combinations (four materials in the stimulus
by four materials in the probe). The fitted ellipses are
shown per lighting combination in Figure 5 and for
different groups of observers in Figure 6. Every data
point represents the settings of two of the three sliders
in the probe in one trial. For clarity of presentation, the
data points themselves were rendered invisible in the
plots. Each subplot contains three ellipses, which depict
the results for three different weight combinations in
the stimuli. The coordinates of the crosses depict the
corresponding weight combinations of the stimuli (see
Table 1). This provides a means to visualize the extent
to which participants confuse the lighting modes. In
general, if there is less overlap between ellipses, if the
ellipses are centered closer to the crosses, and if the
ellipses are smaller, then the lighting modes interact
less. The general results can be seen in Figure 5. In the
plots, the red color corresponds to the stimuli in which
only ambient light was present, the green color
corresponds to the stimuli in which only focus light was
present, the blue color corresponds to the stimuli in
which only brilliance light was present, and the black
color corresponds to the stimuli when two lighting
modes were optically mixed (each 50% in the mixture).
We find that the ellipses are in the right order but tend
to shift toward each other in the center. Blue ellipses

shifted away from the blue crosses the most, showing
that the responses for mixtures containing the brilliance
light were the least veridical.

To further analyze the interactions between materi-
als and lightings, we looked into the results per material
combination as shown in Supplementary Figure S1.
The rows of Supplementary Figure S1, containing three
subplots, show the matching results per material
combination of the stimuli and the probe under
different lightings, corresponding to the results (one of
the 16 ratios r) shown in Figure 3. For symmetric
matching, if the materials in the stimuli and the probe
were the same, we found that the crosses (the stimulus
centers) fell into the ellipses (one standard deviation of
bivariate normal distribution fitting). The only excep-
tion happened if velvety was presented in the stimuli
and the probe, for which the probing results of the
ambient and brilliance light deviated more than one
standard deviation. For asymmetric matching, Sup-
plementary Figure S1 shows that when velvety was
presented in the probe, the ellipses tended to shift
toward the green cross representing focus lighting or to
the origin for conditions without focus lighting. This
explains why the results were less veridical when the
velvety mode was present as shown in Figure 3.

To further analyze the individual results, we
separated the group of four observers who performed
just above chance level from the group of inexperienced
observers that performed better, according to both the
results from the least squares fitting method (Figure 4)
and their individual bivariation plots (as shown in
Supplementary Figures S2 through S4). In addition, the
four experienced observers were separated as one group
(colored in red in Figure 4). In Figure 6, results of the
three observer groups can be seen in the rows. In each
row, on the left, it shows the 3 3 3 linear factor matrix

Figure 5. Bivariation plots for each combination of two lighting modes for all observers. The three subplots are results for different

lighting combinations. Different colors correspond to different lighting-weight combinations in the stimuli, which are depicted by the

crosses (the veridical weights). Specifically, the red color corresponds to the stimuli in which only ambient light was presented, the

green color corresponds to the stimuli in which only focus light was presented, the blue color corresponds to the stimuli in which only

brilliance light was presented, and the black color corresponds to the stimuli when two lighting modes were optically mixed (each

50% in the mixture). The ellipses represent one standard deviation of bivariate normal distributions fitted to the data.
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X that was calculated per group (the same format as
Table 2). On the right, each subplot shows a
combination of two lighting modes (in colors). The first
row shows the data for the group of the four
experienced observers; note that all of them performed
well above chance (r ¼ 0:60; 0:69; 0:69; 0:79). The sec-
ond row shows the data for the group of the seven well-
performing inexperienced observers
(r ¼ 0:55; 0:55; 0:57; 0:61; 0:62; 0:66; 0:68). The third
row shows the data for the group of the four
inexperienced observers that performed just above
chance (r ¼ 0:35; 0:35; 0:39; 0:40). The ellipses for the
experienced observers (the first row) show less overlap

than those for the inexperienced observers (the second
row) and certainly than those for the just-above-chance
performers. The crosses, depicting the veridical settings,
were all within the ellipses for the experienced
observers, and the blue crosses (brilliance light) were
outside the blue ellipses for the well-performing
inexperienced observers; i.e., the veridical weights of
the brilliance lighting mode differed more from the
mean probing results for this group of inexperienced
observers. The results of the observers who performed
just above chance level according to the least square
fitting analysis, as shown in the third row, cluster in the
center. Overall, the ellipses tend to shift to the center of

Figure 6. Left: Linear factor matrices that were fitted using the least squares method, per group, in the same format as in Table 2.

Right: Bivariation plots for each combination of two lighting modes (in the columns) for three groups of observers (in the rows). Top:

Results of the four experienced observers. Middle: Results of the seven inexperienced observers who performed far above chance.

Bottom: Results of the four inexperienced observers who performed just above chance. Different colors correspond to different

lighting-weight combinations in the stimuli, which are depicted by the crosses (the veridical weights). Specifically, the red color

corresponds to the stimuli in which only ambient light was presented, the green color corresponds to the stimuli in which only focus

light was presented, the blue color corresponds to the stimuli in which only brilliance light was presented, and the black color

corresponds to the stimuli when two lighting modes were optically mixed (each 50% in the mixture). The ellipses represent one

standard deviation of bivariate normal distributions fitted to the data.
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the plots. Apparently, the participants always use at
least two sliders even when only one slider is required
for a perfect match. This is especially obvious with the
inexperienced observers, but it is also apparent for the
experienced participants.

Intermediate discussion

In Experiment 1, we asked observers to match
optically mixed lightings in two conditions: symmetric
matching (same materials in the stimulus and the
probe) and asymmetric matching (different materials in
the stimulus and the probe). The goal was to test
whether observers could match the mixture of canon-
ical lighting modes while discounting materials. In
general, observers were above chance level in the light-
matching tasks. Individual differences were found as
four out of 15 observers tended to mix all lightings no
matter if they were presented in the stimulus, which led
to their less-veridical performances. We also found that
when velvety was presented in the probe or in the
stimulus, the overall performance was significantly less
veridical. To conclude, using our optical mixing
interface, we found that observers were able to either
match lightings while discounting materials (Experi-
ment 1) or match materials while discounting lightings
(Zhang et al., 2016). To further investigate the
confounds between our canonical material and lighting
modes, we designed Experiment 2 to test whether
observers could simultaneously discriminate materials
and lightings and Experiment 3 to relate the results of
the two types of tasks.

Experiment 2: Can people
simultaneously discriminate
material and lighting?

Methods

This experiment was to test whether observers can
discriminate our canonical material and lighting modes
simultaneously and to what extent material and
lighting perceptions are confounded. The task was
similar to a previous study in which observers were
asked to judge materials and illuminations separately
for a series of spherical objects (te Pas and Pont, 2005).
Here, we asked observers to make discrimination
judgments for a more systematic set, that is, our
canonical material and lighting modes, and observers
had to judge materials and lightings simultaneously. In
each trial, observers were shown a pair of stimulus
images and asked to choose from four response

categories—‘‘same materials same lightings,’’ ‘‘same
materials different lightings,’’ ‘‘different materials same
lightings,’’ and ‘‘different materials different light-
ings’’—based on the appearance of two birds (Figure
7). The aim of the experiment was to test whether (and
for which modes) observers can judge if differences in
appearance are due to material and/or lighting
variations for systematically chosen modes that
strongly differ optically and together span much of the
reflectance and lighting spaces. The interface was
developed with the Psychophysics Toolbox extensions
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in
MATLAB and presented to the observers on a linearly
calibrated Apple, Inc., 15-in. retina display.

Stimuli

Only the 12 basis images were used as stimuli in
Experiment 2 (Figure 1); i.e., no optical mixing was
performed in Experiment 2.

Observers

Eight paid inexperienced observers participated in
Experiment 2. All participants had normal or correct-
ed-to-normal vision. Participants read and signed the
consent form before the experiments. The experiments
were approved by the human research ethics committee
at Delft University of Technology and conducted in
accordance with the declaration of Helsinki and Dutch
law.

Procedure

Because all observers were inexperienced and did not
participate in Experiment 1, they were instructed to
browse through all stimulus images in pseudorandom
order before the actual experiment started to give them
a brief idea of how similar or different the images could
be. Each stimulus image was repeated twice and
displayed for at least 0.5 s before the observer could
click a button to display the next one. They were told
that there were four different material types and three
lighting types and every image would be one of the four
materials in one of the three types of lighting. They
were also told that, in the actual experiment, their task
would be to compare two of the images and answer
whether the materials are the same or different and
whether the lightings are the same or different.

With 12 basis images as stimuli, there were 78
possible combinations, 12 of ‘‘same materials same
lightings,’’ 12 of ‘‘same materials different lightings,’’ 18
of ‘‘different materials same lightings,’’ and 36 of
‘‘different materials different lightings.’’ In order to
balance the number of trials for each stimulus category,
they were repeated six, six, four, and two times per
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category, respectively, so that we got 72 trials per
stimulus category, i.e., 288 trials per observer. Without
time limits for the task, it took around an hour to finish
the experiment.

In the actual experiment, a pair of stimuli was
displayed and one of the four options was randomly
initialized. For the images in each stimuli pair, being
left or right was also randomized. Observers were
instructed that they could press up, down, left, and
right arrow keys on the keyboard to select their answer.
The selected one was marked red. Then observers could
press the spacebar to finish the current trial and start
the next one. The numbers on the top left corner of the
interface indicated the progress of the experiment.

Results

Overall performance

In Figure 8, the fractions of responses per stimulus
category are shown. Each square shows the fraction
represented as a gray level with the number showing the
exact value, calculated by dividing the total counts of the
responses by the number of trials per stimulus category

(i.e., 72 in this task). Each row represents one stimulus
category, and each column represents an answering
option. Note that, for each row, the fractions of the four
answers add up to one, and the diagonals show the
fractions of the correct answers, i.e., the discrimination
accuracy. Also note that chance level is 0.25 for this
four-category discrimination experiment. As expected,
when the materials and lightings were both the same in
the stimuli image pair, observers got the highest
accuracy (0.97). When the materials were the same and
lightings were different, the accuracy somewhat de-
creased (0.78). But when the materials were different, the
accuracy strongly decreased to be just above 0.5
independent of whether the lightings were the same
(0.58) or different (0.54). Off-diagonal values are
negligible except for two cases (0.27 and 0.33). The
responses were found to be significantly associated with
the stimulus categories (v2 9ð Þ ¼ 3247:2; p, 0:001). They
also showed that, when materials were different,
observers would indeed perceive the materials to be
different but then be less accurate about whether the
lightings were the same or different. In Supplementary
Figure S5, we present the stimulus image pairs that
resulted in the least and best performances in Experi-

Figure 7. The interface of Experiment 2. Left: Glittery material under ambient light. Right: Specular material under focus light. The four

response options are listed below the images. The selected option is marked red. The number in the top left corner indicates the

progress (number of trials done as a ratio of the total number of trials). Here, the selected option is not correct.
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ment 2 (only for the ‘‘different materials different
lightings’’ category). To conclude, both the material and
lighting differences caused the accuracy to decrease, but
material differences caused the accuracy to decrease
more. For different materials, the observers had much
difficulty in judging whether the lightings were the same
or not but still performed well above chance.

In order to further analyze the results, we imple-
mented signal-detection theory by considering the four-
category discrimination task as two yes-or-no ques-
tions: (a) ‘‘Are the materials the same?’’ and (b) ‘‘are the
lightings the same?’’ Explicitly, when analyzing mate-
rials, lighting was not considered and vice versa. For
example, stimulus (or response) categories ‘‘same
materials same lightings’’ and ‘‘same materials different
lightings’’ were combined as one stimulus (or response)
category for materials (‘‘the same’’). Answering ‘‘the
same’’ when the stimuli were the same constitutes a
‘‘hit,’’ and answering ‘‘the same’’ when the stimuli were
actually different constitutes a ‘‘false alarm.’’ The hits
and false alarms could be converted to z scores z Hitð Þ
and z Fað Þ, respectively (Macmillan & Creelman, 2005).

From z Hitð Þ and z Fað Þ, one can derive the sensitivity
d0, where d0 ¼ z Hitð Þ � z Fað Þ, and the response bias c,
where c ¼ � z Hitð Þ þ z Fað Þ½ �=2. The former refers to
the ability to successfully indicate whether two stimuli
are the same or different. The latter refers to the
tendency to answer ‘‘same’’ independent of the type of
stimulus pair (same or different). It turns out that all
participants were sensitive to differences in materials as

well as in lightings (see Supplementary Table S1
presenting the resulting d0 and c values per participant).
On average, they were significantly more sensitive to
the material differences (d0 ¼ 2:3660:10) than to the
lighting differences (d0 ¼ 1:8260:15). This was con-
firmed in a paired t test: t 7ð Þ ¼ 3:86; p ¼ 0:006. Because
we found a significant difference between the averaged
hit rates, paired t test, t 7ð Þ ¼ 3:20; p ¼ 0:015, but not
between the averaged false alarms, paired t test,
t 7ð Þ ¼ �1:27; p ¼ 0:25, the higher sensitivities for ma-
terials may be attributed to higher hit rates for
materials. The average response biases for materials
(c ¼ 0:0860:06) and for lightings (c ¼ 0:0160:12) were
negligible and not significantly different as confirmed in
a paired t test: t 7ð Þ ¼ �0:84; p ¼ 0:43. This is consistent
with the observation that the usage of the four types of
responses was almost equal: the sums of the columns in
Figure 8 are 1.05, 1.00, 0.98, and 0.97. Finally, the
largest range of individual values happened with z Fað Þ
for lighting (SEM ¼ 0:18; see Supplementary Table
S1), confirming that there are individual differences
comparable to those found for the performance
measure in Experiment 1. In Figure 9, sensitivity d0 and
response bias c for materials and lightings in Experi-
ment 2 are plotted in red. It is clear that observers had
higher sensitivity for materials than for lightings. Note
that, in this figure, we also show the results from
Experiment 3 in blue plots.

Experiment 3: Are matching
performances and discrimination
accuracies within observers
comparable?

Because we found similar effects and idiosyncratic
differences in Experiments 1 and 2, we wanted to
further investigate the relationship between the
matching and discrimination performances. Thus, we
conducted a third experiment consisting of two
sessions, one with the matching task and the other with
the category discrimination task. A different group of
observers was recruited and asked to participate in
both sessions in order to be able to directly compare the
results of the two tasks. Both tasks were simplified by
removing the brilliance lighting mode and keeping
ambient and focus lighting modes only in the stimuli.

Methods

Observers

Ten inexperienced observers participated in both
sessions of Experiment 3. All participants had normal

Figure 8. The fractions of responses per stimulus category. Each

row represents a stimulus category, and each column

represents a response category. The squares on the diagonal are

the fractions of answering correctly, i.e., the discrimination

accuracies.
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or corrected-to-normal vision. Participants read and
signed the consent form before the experiments. The
experiments were approved by the human research
ethics committee at Delft University of Technology and
conducted in accordance with the declaration of
Helsinki and Dutch law.

Session 1: Simplified version of the matching task

Because the brilliance light was removed from the
MixIM 1.0 interface (Figure 10), the basis images used
in the mixing process are only the top two rows in
Figure 1. For mixing only ambient and focus light, the
mixing process for the stimuli was simply adjusted to
Equation 4 with the weights as in Table 3:

Istimulus material ¼ wambient � Iambient material þ wfocus

� Ifocus material: ð4Þ

And similarly, the mixing process for the probe
becomes

Iprobe material ¼ w0
ambient � I0ambient material þ w0

focus

� I0focus material: ð5Þ

In this session, the four material modes in the stimuli
and the four material modes in the probe images were
combined with three weight combinations for the light
modes, which resulted in 48 trials per run. With three
repetitions plus three practice trials, there were 147
trials per observer, which resulted in a session lasting
between 30 and 60 min.

Session 2: Simplified version of the four-category
discrimination task

After observers finished the first session, they did a
second session: the four-category discrimination task
using the same interface as in Experiment 2 (Figure 7).
Unlike in Experiment 2, before the actual experiment
started, observers did not browse through all stimuli
images. Instead, they were told all stimuli images they
were about to see had appeared in the previous session.
They were also told that all stimuli images in this
session would be images of one of the four material

Figure 10. The interface for the first session in Experiment 3.

Left: A stimulus image, consisting of a mixture of matte material

in 50% ambient light and 50% focus light. Right: A probe image

(glittery material mode). Top slider represents the contribution

of ambient light. Bottom slider represents the contribution of

focus light. In this figure, the illumination of the probe image

does not match the illumination of the stimulus image.

No. wambient wfocus

1 1 0

2 0 1

3 0.5 0.5

Table 3. Weight of each canonical lighting mode in the stimuli
for Experiment 3.

Figure 9. Sensitivity d0 and response bias c for materials and

lighting in Experiments 2 and 3. Red-colored plots show results

from Experiment 2, and blue-colored plots show results from

Experiment 3. Crosses depict results for materials; circles depict

results for lighting. Each error bar depicts the corresponding

standard error of the mean for both axes.
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modes in one of the two lighting modes, which they just
manipulated by moving the sliders in the first session.

For each observer, with eight basis images as stimuli,
there were 36 possible combinations, including eight
‘‘same materials same lightings,’’ four ‘‘same materials
different lightings,’’ 12 ‘‘different materials same
lightings,’’ and 12 ‘‘different materials different light-
ings.’’ To create the same number of stimuli per
category, these combinations were repeated three, six,
two, and two times, respectively. The resulting total
number of trials was 24 per category, in total 96 trials
per observer, which took approximately half an hour to
finish.

Results

Matching

Because the brilliance lighting mode was removed in
Experiment 3, the linear factor matrix X solved by least
square fitting changed accordingly as in Equation 6:

P½ �23 963Nð Þ ¼ X½ �23 2 � S½ �23 963Nð Þ
þ E½ �23 963Nð Þ; ð6Þ

S½ � ¼ wambient

wfocus

� �
, the weights of the stimuli,

P½ � ¼ w0
ambient

w0
focus

� �
, the weights of the probe,

and the residuals E½ � ¼ eambient

efocus

� �
.

For N participants, there were in total 963Nð Þ
columns in matrix S, matrix P, and matrix E when
solving the Equation 6. The linear factor matrix X
became 2 3 2, and the matrix E was again the
subtraction between P and X � S. If the matching would
be veridical, S would be a 2 3 2 identity matrix, and
matrix E would be a 2 3 963Nð Þ zero matrix. The
matching performance could be evaluated in the same
manner as in Experiment 1, i.e., taking the ratio
between the sum of the diagonal values and the sum of
X, i.e., r ¼

P
diag Xð Þ=

P
Xð Þ, which ranges from zero

(only possible mathematically) to one (veridical). Note
that, in Experiment 3, the chance level is 0.5, which is
higher than the chance level (0.33) in Experiment 1.

The overall matching results of all observers in
Experiment 3 (N ¼ 10) are

X ¼ 0:72 0:35
0:41 0:73

� �
; r ¼ 0:66:

Because the chance level is 0.50, the ratio r being 0.66
shows that, overall, observers performed above chance
in the matching session in Experiment 3. The bivariation
plot of all observers is shown in Figure 11 in the same

format as in Figures 5 and 6 for Experiment 1. Each
ellipse represents one standard deviation of bivariate
normal distribution fitted to 16 data points (rendered
invisible for clarity of presentation). The coordinates of
the crosses depict the corresponding weight combina-
tions of the stimuli as shown in Table 3, corresponding
to the color of the ellipses. Specifically, the red color
corresponds to the stimuli in which only ambient light
was presented, the green color corresponds to the stimuli
in which only focus light was presented, the black color
corresponds to the stimuli in which both lighting modes
were optically mixed 50% each in the mixture. Similar to
what can be seen in Figure 5, the ellipses show a shift
from the veridical values toward the center but are still
in the correct order. Check Supplementary Figure S6 for
individual results.

Discrimination

The results of the four-category discrimination task
are shown in Figure 12. Similar to the results of
Experiment 2 (Figure 8), when the materials and
lightings were both the same in the stimuli image pair,
observers got the highest accuracy, being 0.89. When
the materials were the same and lightings were
different, the accuracy decreased to 0.48. The accuracy
was 0.43 when the materials were different and the
lightings were the same, and 0.57 when both the
materials and the lightings were different. Note that

Figure 11. The bivariation plot of the overall matching results in

Experiment 3 (N ¼ 10). Different colors correspond to weight

combinations (Table 3) of ambient light (x-axis) and focus light

(y-axis) in the stimuli, which are depicted by the crosses.

Specifically, the red color corresponds to the stimuli in which

only ambient light was presented, the green color corresponds

to the stimuli in which only focus light was presented, and the

black color corresponds to the stimuli when two lighting modes

were optically mixed (each 50% in the mixture). The ellipses

represent one standard deviation of bivariate normal distribu-

tions fitted to the data.
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here the chance level is 0.25, the same as in Experiment
2. We again found a strong association between the
responses and the stimulus categories
(v2 9ð Þ ¼ 926:32; p, 0:001).

Again, we implemented signal-detection theory by
considering the four-category discrimination task as
two yes-or-no questions: (a) ‘‘Are the materials the
same?’’ and (b) ‘‘are the lightings the same?’’ As in
Experiment 2, observers were all found to be sensitive
to the differences in both the materials and the lightings
(the resulting values of sensitivity d0 and response bias c
are listed in Supplementary Table S2). They were also
significantly more sensitive to material differences
(d0 ¼ 1:8560:16) than to lighting differences
(d0 ¼ 1:1260:16), confirmed in a paired t test,
t 9ð Þ ¼ 6:832; p, 0:001. The average response bias for
materials (c ¼ 0:2560:07) was not significantly differ-
ent from that for lightings (c ¼ 0:0060:09), confirmed
in a paired t test,t 9ð Þ ¼ 2:151; p ¼ 0:06. Unlike in
Experiment 2, there was no significant difference between
the averaged hit rates, paired t test, t 9ð Þ ¼ 0:97; p, 0:36,
but now there was one between the averaged false
alarms, paired t test, t 9ð Þ ¼ �4:45; p ¼ 0:002, suggesting
that the higher sensitivities for materials may be
attributed to lower false alarm rates.

Comparison

To directly compare the performances of the
matching task (session 1) and the four-category

discrimination task (session 2), we first tested at a
global level by correlating the individual light-matching
accuracies with the corresponding sensitivities d0 and
response biases c for both materials and lighting (see
Supplementary Table S2). The light-matching accuracy
was found to be significantly correlated with one
variable only, namely response bias c for light
discrimination (negatively correlated,
r2 ¼ 0:40; p ¼ 0:049).

Subsequently, we further tested the correlation
between the light-matching accuracy (the ratio r) and
the light-discrimination accuracy (the fraction of
correctly answering ‘‘same lighting’’) per material
combination (Figure 13). Overall, a significant corre-
lation between the light-matching and light-discrimi-
nation accuracy was found in Experiment 3
(r2 ¼ 0:45; p, 0:01). More specifically, some observa-
tions are listed below:

� For the symmetric cluster in which materials were
the same (blue data points), we observed that the
material combinations including velvet tend to
produce lower performances in both the discrim-
ination and matching tasks.
� For the asymmetric cluster in which materials were
different (red data points), we observed that when
specular material was involved, the discrimination
accuracy (0.57 6 0.04) was significantly higher

Figure 13. Comparison between the lighting-matching and the

discrimination results in Experiment 3. The data points depict

different material combinations with ‘‘m’’, ‘‘v’’, ‘‘s’’, and ‘‘g’’
denoting matte, velvety, specular, and glittery, respectively (e.g.,

‘‘m-m’’ means the materials in the trial were both matte; ‘‘s-g’’
means the materials in the trial were specular and glittery).

Colors were assigned using a k-means clustering algorithm for

two clusters with the crosses depicting the cluster centroids.

The dashed line depicts the identity line.

Figure 12. The fractions of responses per stimulus category of

the four-category discrimination task in Experiment 3. Each row

represents a stimulus, and each column represents a response

category. The squares on the diagonals are the fractions of

answering correctly, i.e., the accuracies.
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than when specular material was not involved (0.49
6 0.03).
� The combinations with specular and glittery
resulted in the highest performance, showing that
those two modes interacted least of all asymmetric
combinations.
� The combinations with velvety and matte gave the
lowest performance among all cases, showing that
these modes interacted most of all our material
modes.

Discussion

In this paper, we present three experiments. In
Experiment 1, we asked observers to optically mix three
canonical lighting modes (ambient, focus, and bril-
liance) while discounting our canonical material modes
(matte, velvety, specular, and glittery) in a matching
task. Eleven out of 15 observers’ performance levels
were well above chance, and the remaining four
observers performed just above chance (Figure 4). In
Experiment 2, we asked observers to simultaneously
discriminate materials and lightings in a four-category
discrimination task and found that observers were
more sensitive in discriminating our material modes
than our lighting modes; i.e., they were better at
judging the material modes than the lighting modes to
be the same or not. In Experiment 3, we implemented a
simplified version of both the matching and four-
category discrimination tasks by removing the bril-
liance light and then asked observers to first perform
the matching task and then the four-category discrim-
ination task. Results from Experiment 3 showed that
the matching and discrimination results were compa-
rable and confirmed the asymmetric perceptual con-
founds between materials and lightings that we
observed in Experiments 1 and 2. Across these
experiments, observers were found to be more sensitive
to material differences than to lightings differences.

For the matching task, an interface inspired by
audio-mixing desks was tested in a previous study
(Zhang et al., 2016) and further developed in this study.
Here, the number of sliders in the interface was reduced
from four for the material mixing in the previous study
to three in Experiment 1 and two in Experiment 3 of
this study for lighting matching. This actually reduced
the level of complexity of manipulating the interface
and increased the level of chance performance from one
of four to one of three for Experiment 1 and one of two
for Experiment 3 (if calculated as the ratio r using least
squares fitting). However, the general performance of
the light-matching task in this study was lower than the
performance of the material-matching task in our
former studies. So observers were better at discounting

our lightings in matching the optically mixed canonical
material modes than discounting our materials in
matching the optically mixed canonical lighting modes.
This again confirms the asymmetric perceptual con-
founds we found in Experiments 2 and 3.

One possible cause of this asymmetric perceptual
confound might be that we showed the appearance of
the objects without a context. In our experiments,
observers had to make judgments based purely on the
objects’ appearances. If observers would have access to
other information about the light, such as from the
background or the appearance of other objects, it
might be easier for them to make more accurate
judgments. Indeed, light is usually inferred by looking
at the appearance of (the objects in) a scene.

Ecologically, this asymmetric confound makes sense
as human beings have to recognize and interact with
materials under different illumination in our daily lives.
Yet most of us (except for instance lighting profes-
sionals) do not normally have the necessity to recognize
or interact with different types of lightings. In fact, we
may simply be used to changes of illumination in
natural environments without realizing it, especially for
those changes that occur naturally, which is the case for
the variations and modes that we used.

It should be realized, however, that we are compar-
ing apples and oranges (lighting and materials) and that
there is no obvious physical basis to compare the
magnitudes of the differences between materials and
lightings. In this study, we approached this by selecting
canonical modes, which are optically very different
from each other and altogether span much of the
reflectance (BRDF) space and descriptions of natural
light fields. The limitations of our conclusions are
obviously set by this choice of modes and their
representations via the bird photographs. Detailed
characteristics of the modes, such as lighting direction,
beam width, the statistical characteristics of the
brilliance lighting, and microscattering properties of
the glittery flakes or velvet hairs, are expected to have
an influence on the results. However, considering the
coarse characteristics of the modes and especially how
wide apart they are in the spaces of possible reflectance
and lighting types, we reasoned that the asymmetric
confound in this study suggests a more generic
phenomenon with an ecologically plausible basis.

This connects to how our visual systems represent
materials and lightings. In material-perception studies,
instead of the ‘‘inverse optics’’ and the ‘‘image
statistics’’ approaches, the ‘‘statistical appearance
models’’ approach represents an alternative, for in-
stance, for the study of gloss perception (Fleming,
2014). Similarly, in our studies, we presented ‘‘a
painterly approach’’ (Zhang et al., 2016), i.e., optical
mixing of canonical material or lighting modes, that
allows observers to intuitively manipulate the midlevel
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image cues in a weighted-mixture manner. From the
results of our earlier material-matching experiment, we
argued that these key midlevel image features form the
triggers for material perceptions, such as the smooth
shading along the surface of the matte mode, the bright
contours for the velvety mode, the highlights for the
specular mode, and the bright speckles all over the
surfaces of the glittery mode (Zhang et al., 2016). Here,
we argue that midlevel image features could also be the
triggers for our lighting perceptions: the overall
brightness and lack of gradients for the ambient or
mathematical zeroth-order component of the light; the
contrast, main highlight, and the shading gradient
direction for the focus or first-order component of the
light; and the contrast and spatial patterns of the glint
for the brilliance or higher order components of the
light (Ganslandt & Hofmann, 1992; Kelly, 1952). Close
observation of our photographs in Figure 1 plus their
mixtures and computer-rendered simulations may
suggest that these features are, overall, less robust for
variations of material than for variations of lighting
(Figure 14). In Figure 14A, we show the top 5%
brightest pixels in each basis image by applying
thresholding to the red channel of the images. In Figure
14B, we show the shading patterns by posterizing the
green channel of the basis images from 255 to four
levels. The last column of the thresholded images shows
that the images of glittery material are clearly
dominated by the spread of the dots, i.e., the glints, that

result in the glittery appearance regardless of illumi-
nation. The images of the matte, velvety, and specular
materials show otherwise spatially varied patterns.
Specifically, we observed smooth shading gradients for
matte mode; smooth shading gradients, bright con-
tours, and fine-grained textures that might trigger the
velvetiness in the velvety image; and the specular
highlight regions spread along the curvature of the
surface for specular mode (except for specular under
the ambient lighting, which caused interactions with
matte mode). One may argue that, in ambient lighting,
the bright contours, which we suggested trigger
velvetiness, can be observed in the thresholded images
for matte, velvety, and specular material, too. Howev-
er, by closely looking at the spread of the pixels on
those bright contours in velvety images, combining the
patterns of their shadings, we could discriminate
velvety from matte or specular (not quantitatively
though). In natural scenes with arbitrary materials and
light, this difference in feature robustness would make
it harder to judge the lighting than the material.
Similarly, these midlevel image features varied differ-
ently for matte, specular, and glittery materials under
the canonical lighting modes, being more diagnostic for
our canonical materials than our canonical lightings,
causing the asymmetric perceptual confounds. Simple
image statistics (such as comparing the image histo-
grams, then calculating the difference between each two
images, and the correlation between each two images)
could not explain the asymmetric confounds. In order
to better understand what and how midlevel image
features account for material and lighting perception,
novel quantitative metrics are required for image
analysis, such as separating specific features from
object color (Klinker, Shafer, & Kanade 1987).

Conclusion

In this study, we implemented two types of tasks,
namely a light-matching task and a four-category
discrimination task for our canonical material and
lighting modes. From the results of the light-matching
tasks in Experiments 1 and 3, we found that most of
our observers could match optically mixed canonical
lighting modes while discounting materials although a
small portion of the observers tended to use only a
narrow range around the center of the possible slider
positions. In particular, observers performed better
when the materials in the stimulus and the probe were
the same than when they were different. From the
results of the four-category discrimination tasks in
Experiments 2 and 3, we found that observers could
discriminate our material modes better than our
lighting modes. Their sensitivities for the material

Figure 14. Examples of image analyses of the basis images (in

the same format as in Figure 1). Top: The red-channel

thresholding showing the upper 5% percentile of brightest

pixels. Note that the thresholding level varies per image.

Bottom: The green-channel of the basis images after posteri-

zation from 255 to four levels.
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discrimination were found to be higher than those for
the lighting discrimination. Observers also found it
difficult to discriminate lighting modes when the
materials were different. Moreover, in Experiment 3, by
conducting a simplified version of both matching and
discrimination tasks with the same group of observers,
we found that the performances of matching and
discrimination task were indeed comparable.

To conclude, in all three experiments and across all
observers, the sensitivities for judging the differences
between our canonical material modes are higher than
those for the canonical lighting modes. If materials are
different, it is harder to see whether or not the
illuminations are different than if materials are the
same. If lightings are different, it is almost as easy to see
whether the materials are different or not as when the
lightings are the same. Our findings suggest that
midlevel image features are more robust across
different materials than across different lightings and,
thus, more diagnostic for our canonical materials than
our canonical lightings, causing the asymmetric per-
ceptual confounds.

Keywords: material perception, light perception,
material–lighting confounds, matching, discrimination
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