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ABSTRACT: Selecting an appropriate soil constitutive model and determining the corresponding model parameters for numerical 
analysis are considered most challenging in geotechnical engineering. While many empirical relationships have been proposed to 
derive soil parameters from in situ test results, there is no clear procedure on how to derive model parameters uniquely. In practice, 
available data during the early stages of projects is often limited to field test data. Consequently, different engineers provide different 
numerical solutions for the same problem. As a solution, the authors present a proof of concept for an automated parameter 
determination (APD) system, using concepts of graph theory to determine constitutive model parameters from in situ tests while 
keeping the system transparent (verifiable) and adaptable (extendable). The study aims to increase the confidence in parameter 
determination for numerical analysis by giving the user of the system, the geotechnical engineer, control over the system. Using a 
spreadsheet of parameters and equations as input, the system generates paths between the parameters and calculates the parameter 
values for coarse-grained soil, starting from CPT data. Further validation and tweaking of the system, as well as the extension to 
other types of soils, are part of ongoing research. 

RÉSUMÉ: La sélection d’un modèle constitutif approprié d’un sol et la détermination de ses paramètres pour une analyse numérique 
sont considérées comme des tâches difficiles en géotechnique. Bien que de nombreuses relations empiriques aient été proposées pour 
identifier les paramètres du sol à partir des résultats d'essais in situ, il n'y a pas de procédure claire sur la façon de déterminer les 
paramètres d’une loi de comportement de manière unique. En pratique, les données disponibles au cours des premières étapes d’un projet 
sont souvent limitées aux données d'essais sur le terrain. Par conséquent, différents ingénieurs fournissent différentes solutions 
numériques pour un même problème. En guise de solution, les auteurs présentent une démonstration de faisabilité pour un système de 
détermination automatique des paramètres (APD), utilisant des concepts de la théorie des graphes pour déterminer les paramètres de 
modèles constitutifs à partir d’essais in situ, tout en gardant le système transparent (vérifiable) et adaptable (extensible). L'étude vise à 
accroître la confiance dans la détermination des paramètres pour l'analyse numérique en donnant à l'utilisateur du système, l'ingénieur 
géotechnicien, le contrôle du système. En utilisant en entrée des paramètres et des équations dans une feuille de calcul, le système génère 
des chemins entre les paramètres, et calcule les valeurs de ceux-ci pour des sols à gros grains à partir des données d’un CPT. La validation 
et l’ajustement ultérieur du système, ainsi que l'extension à d'autres types de sols, font partie des recherches en cours. 

KEYWORDS: Automated parameter determination (APD); empirical correlations; constitutive modelling; in situ testing; soil 
characterisation; cone penetration test (CPT) 

1  INTRODUCTION 

The past three decades computer technologies have improved 
and have resulted in a wider use of numerical methods in 
geotechnical practice. At the same time, constitutive models have 
developed significantly making it possible to simulate complex 
soil behaviour (e.g., stress-, strain- and time-dependency). 
Despite the presence of these advanced models, engineers still 
tend to favour less sophisticated models, such as the linear elastic 
perfectly-plastic Mohr-Coulomb model. The Mohr-Coulomb 
model is used for its simplicity and suitability for many 
applications. Its number of input parameters is limited to five, 
whereas more complicated models require a larger number of 
input parameters (e.g., 13 parameters for the Hardening Soil 
Small-Strain model) that have to be defined from a larger number 
of experimental tests (in situ tests and laboratory tests) which is 
not always possible due to lack of data.  

In situ tests, such as the cone penetration test (CPT), are 
popular among engineers since they are quick and reproducible 
for site characterisation, soil profiling and estimating constitutive 
properties of the soil with minimal disturbance and at low cost, 
unlike laboratory tests like oedometer tests and triaxial tests. The 
main issue with interpreting in situ test results is the large amount 
of empiricism engineers have to rely on; parameters cannot be 
determined directly from experimental curves as in laboratory 
testing, but through empirical relationships, and often many 
relationships are available to determine the same parameter, 
resulting in a wide range of answers for the same problem. The 

outcome of each parameter depends on the validity and 
limitations of the selected method, and interpretation is based on 
engineering judgement. Over the years, many authors have 
developed empirical relationships to interpret soil from in situ 
test results, such as Kulhawy & Mayne (1990), Lunne, Powell & 
Robertson (1997) and Robertson (2015). The challenges in soil 
interpretation from experimental data have increasingly led to the 
demand for a more efficient parameter determination system to 
perform more reliable numerical simulations. “There is little 
point in doing a refined analysis if the properties cannot be 
identified clearly” (Graham, 2006).  

To address the problem described above, the past two decades 
artificial neural networks (ANNs) have been increasingly used in 
geotechnical practice (Reale, Gavin, Libric, & Juric-Kacunic, 
2018). By capturing the relationship between input and output 
parameters in a network without any prior knowledge, ANNs can 
mimic human brain behaviour and work with incomplete 
information. The main issue with ANNs is their lack of 
transparency; they are known as “black boxes” that are incapable 
of explaining how information is used to derive a solution. 

This study presents a proof of concept for an automated 
parameter determination (APD) system from in situ test results, 
using concepts from graph theory. Key aspects are transparency, 
i.e., information used by the system should be verifiable, and 
adaptability, i.e., experts using the system should be able to 
extend the system by adding their expertise into the system. The 
aim is to increase the efficiency of parameter determination to 
perform geotechnical finite element calculations and to decrease 
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the variability in input values and results by different engineers. 
Using a spreadsheet of parameters and equations as input, the 
system generates a graph showing paths between the parameters 
and calculates the value for all parameters in the graph. The focus 
of this study is to determine engineering parameters for coarse-
grained soils based on CPT data. However, due to the generality 
of the proposed method, the system can be extended to a wider 
range of soils and experimental tests. 

Section 2 describes the basic concepts of graph theory and 
how these are applied in the APD system. Section 3 provides an 
overview of some of the selected empirical relationships used in 
the APD system, in order to demonstrate the viability of the 
system. Section 4 presents a graph generated by the APD system, 
showing all possible paths between the measured (CPT) 
parameters and the engineering parameters for a coarse-grained 
soil, together with the calculated values for all parameters in the 
graph. Section 5 presents the conclusions of this study. 

2  GRAPHS AS DETERMINATION METHOD 

2.1  Brief introduction to graph theory and network analysis 

Graph theory is a branch of mathematics where relationships 
between objects in a network are studied. A graph is a 
mathematical term for a network and is described by two sets of 
objects: nodes, representing the entities of the graph, and edges, 
representing the relationship between a pair of nodes. Graphs 
benefit from their ability to visualise complex systems, like in a 
train network where the connectivity (edges) between the 
stations (nodes) are modelled and can be used for optimising the 
transportation between the stations. The parameter determination 
framework makes use of a weighted directed graph in which an 
inherent direction exists between the pairs of nodes in a graph 
and edges between the nodes can have a weight. An example of 
a weighted directed graph is a one-way traffic city centre where 
the roads (edges) may have a weight representing the distance or 
travel time. 

2.2  Application to parameter determination in geotechnical 
engineering 

The concept of graph theory can also be applied to the parameter 
determination framework, as shown in Figure 1. In this 
framework, all valid correlation paths are generated, linking 
measured parameters (e.g., CPT measurements) via intermediate 
parameters (e.g., relative density) with the constitutive model 
parameters (Brinkgreve, 2019). It is similar to a satellite 
navigation system, where commuters can choose between 
different routes (paths) to travel from location A (source node) to 
location B (destination node). In a parameter determination 
system a final parameter (destination node) can be derived in 
multiple ways (paths) since in many situations more than one 
empirical correlation may be valid to estimate the same 
parameter.  

 
Figure 1. Schematic representation of the parameter determination 
framework; modified from Brinkgreve (2019). 

Finding a path in a network from a particular node to another 
node is a well-known problem, and it is widely used in other 
applications such as dynamic routing in logistics and computer 
network routing (Shu-Xi, 2012). Many existing graph algorithms 
solve the shortest path problem, of which one of the best-known 
algorithms is Dijkstra’s for finding the shortest path between a 
pair of nodes in a (weighted) graph. There are two main problems 
when applying existing graph algorithms to the parameter 
determination framework. First of all, different from graph 
theory where a path is defined as the connection between one 
source node (start) and one destination node (end), in the 
parameter determination framework a path to the destination 
node can have multiple source nodes since parameters involved 
in a path can be derived by multivariable formulas (e.g., 
empirical correlations) that depend on multiple input parameters. 
In other words, branching paths occur in the parameter 
determination framework. Therefore, existing graph algorithms 
are not suitable since they do not deal with branching paths. In 
fact, according to graph theory a path is defined as the connection 
between a pair of nodes (i.e., branching paths do not occur). 
Second, in the parameter determination framework more than 
one (branching) path can lead to the same destination parameter 
since often more than one empirical relationship may be 
available to determine the same parameter. Paths leading to the 
same parameter may have different lengths, involving different 
equations that may use different sources or intermediate 
parameters. This would result in multiple parameter outcomes, 
which have to be dealt with in the APD system in order to 
calculate the final parameter value. 

To deal with branching paths, the parameter determination 
framework distinguishes two types of nodes: parameters and 
methods ( 

 
Figure 2). The reason for this is explained by using the graph 

in  
 
Figure 2a with both parameters and methods as nodes, 

connected by edges. Parameter C can be estimated in two ways 
(paths): via Method C1 with Parameter A and B as input, or via 
Method C2 with Parameter B and D as input. In  

 
Figure 2b, an attempt is made to visualise the same 

configuration, but now using only parameters as nodes. This 
representation fails to visualise that there are two unique paths to 
determine Parameter C; Method C1 and Method C2. Method 
nodes are often empirical correlations that depend on more than 
one input parameter (i.e., multivariable formulas). These nodes 
therefore have multiple incoming edges and indicate that all 
parameters are required as input for the method. This can be seen 
in  

 
Figure 2a where both Method C1 and Method C2 have 

multiple incoming edges illustrating that two branching paths 
lead to Parameter C. Note that throughout this paper, the term 
‘method’ is used instead of ‘formula’ or ‘correlation’ as 
parameters can also be derived in alternative ways (e.g., tables 
and charts from literature).  
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Figure 2. Different representations of a graph with multivariable 
formulas (methods) using (a) two types of nodes and (b) one type of node. 

To keep the APD system modular, the system separates 
concrete information from abstract information. All the expert 
knowledge, e.g. empirical correlations, is implemented in an 
external database of the system (concrete information) while the 
system itself only contains the algorithm (abstract information) 
to generate paths between related methods and parameters. Using 
parameters and methods from the external database as input, the 
APD system can generate a graph that visualises all valid paths 
to determine the destination parameters. The system also 
calculates each parameter in the graph.  

It should be emphasised that the responsibility of correctly 
using the external database lies with the user of the system, i.e., 
the engineer. However, a standard validated external database of 
parameters and equations is provided by the APD system. Users 
who simply use this standard set of parameters and equations 
should still apply their geotechnical knowledge to confirm or 
reject the outcome, but even with limited geotechnical 
knowledge of the user, the system should arrive at reliable 
outcomes. To establish the external database correctly, the system 
constructs the paths in reverse order. By beginning at the 
destination parameter, the system searches in the database what 
methods can be used to calculate that parameter. Subsequently, 
for each of these methods, the system ‘recognizes’ what input 
parameters are involved in the equation. For these input 
parameters, the same process is repeated until the path is 
completed. 

2.3  Generating a path and calculating a parameter 

The key to generating a path is to define the objects in the system 
in a generic way to link methods and parameters that share a 
relationship. The relationship between each parameter and 
method is implicitly defined by the input and output parameters 
of the method’s formula. The system consists of three abstract 
objects: Method, Connector and Parameter. The methods and 
parameters from the system’s external database are imported into 
the system, processed by the abstract objects in the system after 
which the system generates the resulting graph, visualising all 
valid paths and calculated values for each parameter in the graph. 
The system is built in the programming language Python. 

 
An example graph is shown in Figure 4. Based on the 

measured cone tip resistance qc, pore water pressure u2 and the 
cone area ratio a, the corrected cone tip resistance qt can be 
calculated using the empirical relationship proposed by 
Robertson (1986). To generate this graph, method 
Robertson1986 is imported from the external database into the 
system and becomes a concrete object after implementing the 
system’s abstract object Method (Figure 3), which is defined by 
the external properties: author, parameters_in, parameter_out, 
formula, accformula and weight. The same applies to the 
parameters qc, u2, a, qt, which are imported from the external 
database into the system and become concrete objects after 

implementing the system’s abstract object Parameter, defined by 
the external properties: symbol, unit, definition, value, accuracy. 
These are external properties since they are specified in the 
external database (see Figure 3 and Figure 4). 

The internal properties connector and methods enable the 
connectivity between the three abstract objects. These properties 
are internal since they appear in the APD system, but not in the 
external database (Figure 3 and Figure 4). 

 
Figure 4. Architecture of the APD system (left) with the abstract objects 
Method, Connector and Parameter for the graph example (right). 

The APD system uses the third abstract object called 
Connector to import each individual method and parameter from 
the external database into the system, which links methods with 
parameters based on the output parameter of each method and 
visualises the graph using the Python graph visualisation library 
graphviz (Gansner, 2011).  

The value of a parameter can be calculated based on the 
information provided by the system’s external database (Figure 
4). Parameter qt does not have a value yet, since it will be 
calculated by the system. Using the empirical correlation 
qc+u2(1-a) (formula: qc+u2*(1-a)), proposed by Robertson 
(1986) (author: Robertson1986), with input parameters qc, u2 and 
a (parameters_in: qc, u2, a), the output parameter qt 
(parameter_out: qt) can be calculated by the system. The same 
holds for calculating the accuracy using accformula.  

The term ‘parameter accuracy’ as used within the framework 
of this article, can be defined based on the variation in outcomes 
from the different paths that lead to that parameter, or from 
variations within the same soil layer. Note that this study does 
not focus on calculating the final parameter value or the accuracy 
of a parameter, but it allows these aspects to be included in the 
system. In fact, the research has meanwhile progressed and a 
proposal for a final parameter value determination and an 
accuracy calculation has been presented (Hauth, 2020). 

Figure 3. External database of the APD system (left), consisting of a 
parameters and a methods spreadsheet, for the graph example (right) 
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3  SELECTED EMPIRICAL RELATIONSHIPS 

3.1  State parameters 

The relative density Dr is often used as an intermediate parameter, 
defined as 𝐷𝐷𝑟𝑟 = (𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒)/(𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚) in which 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 is 
the maximum void ratio, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum void ratio and e 
is the in situ void ratio. The selected empirical relationships for 
estimating the relative density in the APD system are: 

• 𝐷𝐷𝑟𝑟  [%] = (1 2.91)𝑙𝑙𝑙𝑙(𝑞𝑞𝑐𝑐 60(𝜎𝜎𝑣𝑣0′ )0.7⁄ )⁄  by Lunne & 

Christofferson (1983), where 𝑞𝑞𝑐𝑐 is the cone tip resistance 

and 𝜎𝜎𝑣𝑣0′  is the effective overburden pressure, both 

expressed in kN/m2. 

• 𝐷𝐷𝑟𝑟  [%] = 68[log10(𝑞𝑞𝑡𝑡1) − 1]  by Jamiolkowski, Ladd, 

Germaine & Lancellota (1985), where 𝑞𝑞𝑡𝑡1  is the 

dimensionless normalised cone tip resistance parameter. 

• 𝐷𝐷𝑟𝑟  [%] = 100√𝑞𝑞𝑡𝑡1 (305 ⋅ 𝑂𝑂𝑂𝑂𝑅𝑅0.2)⁄  by Kulhawy & 

Mayne (1990), where OCR is the overconsolidation ratio. 
 

The overconsolidation ratio OCR is defined as the ratio 
between the maximum past effective consolidation stress a
nd the present effective overburden stress: 𝑂𝑂𝑂𝑂𝑅𝑅 = 𝜎𝜎𝑝𝑝′ /𝜎𝜎𝑣𝑣0′ . 
The selected empirical relationship for estimating OCR is: 

• 𝑂𝑂𝑂𝑂𝑅𝑅 [−] = 0.33(𝑞𝑞𝑡𝑡−𝜎𝜎𝑣𝑣0)𝑚𝑚′(𝑝𝑝𝑎𝑎/100)1−𝑚𝑚′𝜎𝜎𝑣𝑣0′  by Kulhawy & 

Mayne (1990) with 𝑚𝑚′ ≈ 0.7  (Mayne, 2013) and 𝑝𝑝𝑚𝑚  is 

the atmospheric reference pressure in kN/m2. 

3.2  Strength parameters 

The peak friction angle 𝜙𝜙𝑝𝑝  is composed by the ultimate 
constant volume friction angle 𝜙𝜙𝑐𝑐𝑣𝑣  and the peak angle of 

dilation 𝜓𝜓𝑝𝑝 : 𝜙𝜙𝑝𝑝′ ≈ 𝜙𝜙𝑐𝑐𝑣𝑣′ + 𝜙𝜙𝑝𝑝 . The following empirical 
relationships are selected for estimating the peak friction angle 𝜙𝜙𝑝𝑝′  and the dilatancy angle 𝜓𝜓𝑝𝑝: 

• 𝜙𝜙𝑝𝑝′ [°] = arctan [0.1 + 0.38 log10(𝑞𝑞𝑡𝑡/𝜎𝜎𝑣𝑣0′ )]  by Robertson 

& Campenalla (1983) and rewritten by Mayne (2006). 

• 𝜙𝜙𝑝𝑝′  [°] = 17.6 + 11.0 log10(𝑞𝑞𝑡𝑡1)  by Kulhawy & Mayne 

(1990). 

• 𝜙𝜙𝑝𝑝′  [°] = 28 + 12.5 ⋅ 𝐷𝐷𝑟𝑟/100  by Brinkgreve, Engin, & 

Engin (2010). 

• 𝜓𝜓𝑝𝑝 [°] = 𝑚𝑚[𝐷𝐷𝑟𝑟(𝑄𝑄 − ln(𝑝𝑝′) − 𝑅𝑅] by Bolton (1986), where 𝑝𝑝′ is the mean effective stress, R is a fitting coefficient  

equal to 1, Q is a soil mineralogy and compressibility 

coefficient ranging from 10 for silica sands to 7 for plane 

strain conditions and 3 for triaxial conditions Jamiolkowski 

(2001). 

• 𝜓𝜓𝑝𝑝 [°] = −2 + 12.5 ⋅ 𝐷𝐷𝑟𝑟/100  by Brinkgreve, Engin, & 

Engin (2010). 

3.3  Stiffness parameters 

Estimating stiffness parameters from in situ tests is difficult since 
stiffness varies with effective stress levels and stress history, and 
boundary conditions. The following relationships are used for the 

secant stiffness 𝐸𝐸50 , unloading-reloading stiffness 𝐸𝐸𝑢𝑢𝑟𝑟  and 
oedometric stiffness 𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜 (all at reference stress level pref): 

• 𝐸𝐸50𝑟𝑟𝑟𝑟𝑟𝑟 = 60,000 ⋅ 𝐷𝐷𝑟𝑟 by Lengkeek (2003) 

• 𝐸𝐸𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 180,000 ⋅ 𝐷𝐷𝑟𝑟 by Brinkgreve et al. (2010) 

• 𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸50𝑟𝑟𝑟𝑟𝑟𝑟
 by Schanz & Vermeer (1998) 

• 𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 = 3 ⋅ √𝑝𝑝𝑚𝑚 𝜎𝜎𝑣𝑣0′⁄   by Vermeer (2000) 

Figure 5. Graph generated by the APD system, visualising the different paths leading from the source parameters (green nodes at the start/top of the 
graph) to the destination parameters: strength and stiffness parameters for coarse-grained soil (green nodes at the end/bottom of the graph). The calculated 
value and accuracy for each parameter in the graph are displayed next to the outgoing edge of each method (dashed arrow) for that parameter. 
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• 𝐷𝐷𝑟𝑟  [%] = (1 2.91)𝑙𝑙𝑙𝑙(𝑞𝑞𝑐𝑐 60(𝜎𝜎𝑣𝑣0′ )0.7⁄ )⁄ 𝑞𝑞𝑐𝑐𝜎𝜎𝑣𝑣0′
• 𝐷𝐷𝑟𝑟  [%] = 68[log10(𝑞𝑞𝑡𝑡1) − 1] 𝑞𝑞𝑡𝑡1
• 𝐷𝐷𝑟𝑟  [%] = 100√𝑞𝑞𝑡𝑡1 (305 ⋅ 𝑂𝑂𝑂𝑂𝑅𝑅0.2)⁄

𝑂𝑂𝑂𝑂𝑅𝑅 = 𝜎𝜎𝑝𝑝′ /𝜎𝜎𝑣𝑣0′

• 𝑂𝑂𝑂𝑂𝑅𝑅 [−] = 0.33(𝑞𝑞𝑡𝑡−𝜎𝜎𝑣𝑣0)𝑚𝑚′(𝑝𝑝𝑎𝑎/100)1−𝑚𝑚′𝜎𝜎𝑣𝑣0′𝑚𝑚′ ≈ 0.7 𝑝𝑝𝑚𝑚

𝜙𝜙𝑝𝑝 𝜙𝜙𝑐𝑐𝑣𝑣

𝜓𝜓𝑝𝑝 𝜙𝜙𝑝𝑝′ ≈ 𝜙𝜙𝑐𝑐𝑣𝑣′ + 𝜙𝜙𝑝𝑝𝜙𝜙𝑝𝑝′ 𝜓𝜓𝑝𝑝
• 𝜙𝜙𝑝𝑝′ [°] = arctan [0.1 + 0.38 log10(𝑞𝑞𝑡𝑡/𝜎𝜎𝑣𝑣0′ )]
• 𝜙𝜙𝑝𝑝′  [°] = 17.6 + 11.0 log10(𝑞𝑞𝑡𝑡1)
• 𝜙𝜙𝑝𝑝′  [°] = 28 + 12.5 ⋅ 𝐷𝐷𝑟𝑟/100
• 𝜓𝜓𝑝𝑝 [°] = 𝑚𝑚[𝐷𝐷𝑟𝑟(𝑄𝑄 − ln(𝑝𝑝′) − 𝑅𝑅]𝑝𝑝′
• 𝜓𝜓𝑝𝑝 [°] = −2 + 12.5 ⋅ 𝐷𝐷𝑟𝑟/100

𝐸𝐸50 𝐸𝐸𝑢𝑢𝑟𝑟𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜
• 𝐸𝐸50𝑟𝑟𝑟𝑟𝑟𝑟 = 60,000 ⋅ 𝐷𝐷𝑟𝑟
• 𝐸𝐸𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 180,000 ⋅ 𝐷𝐷𝑟𝑟
• 𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸50𝑟𝑟𝑟𝑟𝑟𝑟
• 𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 = 3 ⋅ √𝑝𝑝𝑚𝑚 𝜎𝜎𝑣𝑣0′⁄

of the 

 

 

Note that the above empirical relationships (methods) have 
only been used to demonstrate the functioning of the system. 
There are facilities in the system that could impose limitations 
(e.g. regarding soil type, over-consolidation, relative density, 
plasticity index) on the use of individual methods, to ensure that 
methods are only used in situations where they are appropriate. 
A further discussion of this functionality is beyond the scope of 
this paper. 

4  DETERMINING STRENGTH AND STIFFNESS 
PARAMETERS IN SAND 

The concept of graph theory is applied to calculate the Hardening 
Soil Small-Strain model’s strength and stiffness parameters for 
sand: peak friction angle 𝜙𝜙𝑝𝑝′  (phiP), maximum dilatancy angle 𝜓𝜓𝑝𝑝   (psiP), reference secant stiffness 𝐸𝐸50𝑟𝑟𝑟𝑟𝑟𝑟 (E50ref), reference 
oedometric stiffness 𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟  (Eoedref), reference unloading-
reloading stiffness 𝐸𝐸𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (Eurref), based on a selection of 
correlations as input for the system (Chapter 3). The methods and 
parameters database are defined as comma-separated values 
(CSV) files. Calculations were verified by comparing the system 
computed results with hand calculated results, which came out 
identical. 

The graph in Figure 5 involves a hypothetical CPT 
measurement at an assumed depth of 20 m below ground surface, 
considering the soil as fully saturated, i.e., phreatic level at the 
ground surface. The cone tip resistance qc is assumed 20,000 kPa, 
the sleeve friction fs is assumed 200 kPa and the pore water 
pressure u2 is assumed 200 kPa. Furthermore, the following 
standard parameters are used: cone area ratio a = 0.8, unit weight 
of water γ = 9.81 kN/m3

, the atmospheric pressure pa = 100 kPa 
and the rate of stress-dependency of stiffness m = 0.7. These 
source parameters are imported into the system from the external 

parameters database parameters.csv (see Figure 6, lower table). 
The remaining parameters (i.e., intermediate and destination 
parameters) do not contain a value and an accuracy since these 
are calculated using the equations as specified in the methods 
database methods.csv (see Figure 6, upper table). 

The graph shows that the APD system is: 

• adaptable, since the user is able to expand the graph by 

adding more empirical correlations to the system’s external 
database to calculate the same or new parameters; 

• transparent, since the graph visualises the entire parameter 

determination process based on the system’s external 
database which can be modified by the user, giving the user 

control over the system. 

For the purpose of presenting a proof of concept that 
demonstrates the viability of the APD system, the following 
assumptions are made in the current system: 

• only a limited number of empirical correlations have been 

used to demonstrate the concept of the system;  

• the weight of a method was arbitrarily determined, e.g., 1.0 

for analytical equations and 0.6 for empirical equations; 

• the accuracy of a parameter was arbitrarily determined by 

accformula in which the product of the input parameter(s) 

is multiplied with the weight of the method. The accuracy 

of the input parameter can be determined from the variation 

in outcomes from different paths or from variations within 

a soil layer (Hauth, 2020). 

Meanwhile, the research has progressed and has resulted in a 
prototype that includes 1) reading and interpretation of core CPT 
data, 2) filtering and stratification into different soil layers, 3) for 

Figure 6. External database of methods and parameters used as input by the APD system. 
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each layer, parameter determination according to concepts of 
graph theory (this paper) based on average values per layer, 4) 
final parameter determination based on averaging of paths 
outcomes, 5) accuracy calculation based on different paths 
outcomes and variations in a layer, and 6) creation of parameter 
sets for a selected soil constitutive model. 

5  CONCLUSIONS 

This study presents an automated parameter determination 
system for geotechnical engineering while ensuring transparency 
and adaptability by applying concepts of graph theory. The 
system aims to increase the efficiency and consistency of 
(constitutive) parameter determination for performing finite 
element calculations and ultimately to decrease the variability 
results by different engineers. This paper showed how paths can 
automatically be generated between parameters in a network 
(graph), using the system’s external database as input. The 
system focused on calculating the engineering parameters for a 
coarse-grained soil based on CPT data, which was successfully 
verified by hand calculations. 

Adaptability of the system is ensured by separating abstract 
information, i.e., the algorithm to generate the graph, from 
concrete information, i.e., the system’s external database 
containing the expert knowledge such as parameters and 
equations. With only little effort, users of the system, e.g., 
geotechnical engineers, can simply use this set of parameters and 
equations to calculate the constitutive model parameters of 
interest but they may also incorporate their own expertise into the 
database to confirm or reject the outcome by the system. 
However, even with limited geotechnical knowledge of the user, 
the system should arrive at reliable outcomes. Transparency of 
the system is ensured by visualising the entire parameter 
determination process in a graph showing all information used 
by the system as defined in the system’s external database which 
can be verified and controlled by the user. 
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